PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Developing the evidence base for adult social care practice: The NIHR School for Social Care Research 
In a foreword to Shaping the Future of Care Together, Prime Minister Gordon Brown says that a care and support system reflecting the needs of our times and meeting our rising aspirations is achievable, but ‘only if we are prepared to rise to the challenge of radical reform’. A number of initiatives will be needed to meet the challenge of improving social care for the growing older population. Before the unveiling of the green paper, The National Institute for Health Research (NIHR) announced that it has provided £15m over a five-year period to establish the NIHR School for Social Care Research. The School’s primary aim is to conduct or commission research that will help to improve adult social care practice in England. The School is seeking ideas for research topics, outline proposals for new studies and expert advice in developing research methods.
doi:10.1179/175016810X12670238442101
PMCID: PMC3191519  PMID: 22003363
social care; research; England; National Institute for Health Research
3.  A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination 
BMC Biotechnology  2011;11:14.
Background
Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris.
Results
A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (β/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%.
Conclusions
Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.
doi:10.1186/1472-6750-11-14
PMCID: PMC3045311  PMID: 21299880

Results 1-3 (3)