PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  MRI-Monitored Intra-Shunt Local Agent Delivery of Motexafin Gadolinium: Towards Improving Long-Term Patency of TIPS 
PLoS ONE  2013;8(2):e57419.
Background
Transjugular intrahepatic portosystemic shunt (TIPS) has become an important and effective interventional procedure in treatment of the complications related to portal hypertension. Although the primary patency of TIPS has been greatly improved due to the clinical application of cover stent-grafts, the long-term patency is still suboptimal. This study was to investigate the feasibility of using magnetic resonance imaging (MRI)-monitored intra-shunt local agent delivery of motexafin gadolinium (MGd) into shunt-vein walls of TIPS. This new technique aimed to ultimately inhibit shuntstenosis of TIPS.
Methodology
Human umbilical vein smooth muscle cells (SMCs) were incubated with various concentrations of MGd, and then examed by confocal microscopy and T1-map MRI. In addition, the proliferation of MGd-treated cells was evaluated. For in vivo validation, seventeen pigs underwent TIPS. Before placement of the stent, an MGd/trypan-blue mixture was locally delivered, via a microporous balloon, into eleven shunt-hepatic vein walls under dynamic MRI monitoring, while trypan-blue only was locally delivered into six shunt-hepatic vein walls as serve as controls. T1-weighted MRI of the shunt-vein walls was achieved before- and at different time points after agent injections. Contrast-to-noise ratio (CNR) of the shunt-vein wall at each time-point was measured. Shunts were harvested for subsequent histology confirmation.
Principal Findings
In vitro studies confirmed the capability of SMCs in uptaking MGds in a concentration-dependent fashion, and demonstrated the suppression of cell proliferation by MGds as well. Dynamic MRI displayed MGd/blue penetration into the shunt-vein walls, showing significantly higher CNR of shunt-vein walls on post-delivery images than on pre-delivery images (49.5±9.4 vs 11.2±1.6, P<0.01), which was confirmed by histology.
Conclusion
Results of this study indicate that MRI-monitored intra-shunt local MGd delivery is feasible and MGd functions as a potential therapeutic agent to inhibit the proliferation of SMCs, which may open alternative avenues to improve the long-term patency of TIPS.
doi:10.1371/journal.pone.0057419
PMCID: PMC3585394  PMID: 23468986
2.  Magnetic Resonance Imaging of Bone Marrow Cell-Mediated Interleukin-10 Gene Therapy of Atherosclerosis 
PLoS ONE  2011;6(9):e24529.
Background
A characteristic feature of atherosclerosis is its diffuse involvement of arteries across the entire human body. Bone marrow cells (BMC) can be simultaneously transferred with therapeutic genes and magnetic resonance (MR) contrast agents prior to their transplantation. Via systemic transplantation, these dual-transferred BMCs can circulate through the entire body and thus function as vehicles to carry genes/contrast agents to multiple atherosclerosis. This study was to evaluate the feasibility of using in vivo MR imaging (MRI) to monitor BMC-mediated interleukin-10 (IL-10) gene therapy of atherosclerosis.
Methodology
For in vitro confirmation, donor mouse BMCs were transduced by IL-10/lentivirus, and then labeled with a T2-MR contrast agent (Feridex). For in vivo validation, atherosclerotic apoE−/− mice were intravenously transplanted with IL-10/Feridex-BMCs (Group I, n = 5) and Feridex-BMCs (Group II, n = 5), compared to controls without BMC transplantation (Group III, n = 5). The cell migration to aortic atherosclerotic lesions was monitored in vivo using 3.0T MRI with subsequent histology correlation. To evaluate the therapeutic effect of BMC-mediated IL-10 gene therapy, we statistically compared the normalized wall indexes (NWI) of ascending aortas amongst different mouse groups with various treatments.
Principal Findings
Of in vitro experiments, simultaneous IL-10 transduction and Feridex labeling of BMCs were successfully achieved, with high cell viability and cell labeling efficiency, as well as IL-10 expression efficiency (≥90%). Of in vivo experiments, MRI of animal groups I and II showed signal voids within the aortic walls due to Feridex-created artifacts from the migrated BMCs in the atherosclerotic plaques, which were confirmed by histology. Histological quantification showed that the mean NWI of group I was significantly lower than those of group II and group III (P<0.05).
Conclusion
This study has confirmed the possibility of using MRI to track, in vivo, IL-10/Feridex-BMCs recruited to atherosclerotic lesions, where IL-10 genes function to prevent the progression of atherosclerosis.
doi:10.1371/journal.pone.0024529
PMCID: PMC3168522  PMID: 21915349

Results 1-2 (2)