PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2 
Genome Biology  2013;14(9):R104.
Background
The p53 transcription factor is located at the core of a complex wiring of signaling pathways that are critical for the preservation of cellular homeostasis. Only recently it has become clear that p53 regulates the expression of several long intergenic noncoding RNAs (lincRNAs). However, relatively little is known about the role that lincRNAs play in this pathway.
Results
Here we characterize a lincRNA named Pint (p53 induced noncoding transcript). We show that Pint is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, Pint promotes cell proliferation and survival by regulating the expression of genes of the TGF-β, MAPK and p53 pathways. Pint is a nuclear lincRNA that directly interacts with the Polycomb repressive complex 2 (PRC2), and is required for PRC2 targeting of specific genes for H3K27 tri-methylation and repression. Furthermore, Pint functional activity is highly dependent on PRC2 expression. We have also identified Pint human ortholog (PINT), which presents suggestive analogies with the murine lincRNA. PINT is similarly regulated by p53, and its expression significantly correlates with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, PINT is downregulated in colon primary tumors, while its overexpression inhibits the proliferation of tumor cells, suggesting a possible role as tumor suppressor.
Conclusions
Our results reveal a p53 autoregulatory negative mechanism where a lincRNA connects p53 activation with epigenetic silencing by PRC2. Additionally, we show analogies and differences between the murine and human orthologs, identifying a novel tumor suppressor candidate lincRNA.
doi:10.1186/gb-2013-14-9-r104
PMCID: PMC4053822  PMID: 24070194
lincRNA; non-coding RNA; p53; gene regulation; Polycomb repressive complex 2
2.  MiR-SNPs as Markers of Toxicity and Clinical Outcome in Hodgkin Lymphoma Patients 
PLoS ONE  2013;8(5):e64716.
Background
In recent years, microRNA (miRNA) pathways have emerged as a crucial system for the regulation of tumorogenesis. miR-SNPs are a novel class of single nucleotide polymorphisms that can affect miRNA pathways.
Design and Methods
We analyzed eight miR-SNPs by allelic discrimination in 141 patients with Hodgkin lymphoma and correlated the results with treatment-related toxicity, response, disease-free survival (DFS) and overall survival (OS).
Results
The KRT81 (rs3660) GG genotype was associated with an increased risk of neurological toxicity (P = 0.016), while patients with XPO5 (rs11077) AA or CC genotypes had a higher rate of bleomycin-associated pulmonary toxicity (P = 0.048). Both miR-SNPs emerged as independent factors in the multivariate analysis. The XPO5 AA and CC genotypes were also associated with a lower response rate (P = 0.036). XPO5 (P = 0.039) and TRBP (rs784567) (P = 0.022) genotypes emerged as prognostic markers for DFS, and XPO5 was also associated with OS (P = 0.033). In the multivariate analysis, only XPO5 emerged as an independent prognostic factor for DFS (HR: 2.622; 95%CI 1.039–6.620; P = 0.041). Given the influence of XPO5 and TRBP as individual markers, we then investigated the combined effect of these miR-SNPs. Patients with both the XPO5 AA/CC and TRBP TT/TC genotypes had the shortest DFS (P = 0.008) and OS (P = 0.008).
Conclusion
miR-SNPs can add useful prognostic information on treatment-related toxicity and clinical outcome in Hodgkin lymphoma and can be used to identify patients likely to be chemoresistant or to relapse.
doi:10.1371/journal.pone.0064716
PMCID: PMC3660374  PMID: 23705004
3.  MicroRNAs in Human Embryonic and Cancer Stem Cells 
Yonsei Medical Journal  2010;51(5):622-632.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate messenger RNAs at the post-transcriptional level. They play an important role in the control of cell physiological functions, and their alterations have been related to cancer, where they can function as oncogenes or tumor suppressor genes. Recently, they have emerged as key regulators of "stemness", collaborating in the maintenance of pluripotency, control of self-renewal, and differen-tiation of stem cells. The miRNA pathway has been shown to be crucial in embryonic development and in embryonic stem (ES) cells, as shown by Dicer knockout analysis. Specific patterns of miRNAs have been reported to be expressed only in ES cells and in early phases of embryonic development. Moreover, many cancers present small populations of cells with stem cell characteristics, called cancer stem cells (CSCs). CSCs are responsible for relapse and treatment failure in many cancer patients, and the comparative analysis of expression patterns between ES cells and tumors can lead to the identification of a miRNA signature to define CSCs. Most of the key miRNAs identified to date in ES cells have been shown to play a role in tumor diagnosis or prognosis, and may well prove to be essential in cancer therapy in the foreseeable future.
doi:10.3349/ymj.2010.51.5.622
PMCID: PMC2908867  PMID: 20635434
miRNA; microRNA; embryonic stem cell; cancer stem cell

Results 1-3 (3)