PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Sentinel lymph node biopsy for high-risk cutaneous squamous cell carcinoma: clinical experience and review of literature 
High-risk cutaneous squamous cell carcinoma (SCC) is associated with an increased risk of metastases. The role of sentinel lymph node (SLN) biopsy in these patients remains unclear. To address this uncertainty, we collected clinical data on six patients with clinical N0 high-risk SCC that underwent SLN biopsy between 1999 and 2006 and performed a literature review of SLN procedures for SCC to study the utility of SLN biopsy. There were no positive SLN identified among six cases and there was one local and one distant recurrence on follow-up. Literature review identified 130 reported cases of SLN biopsy for SCC. The SLN positivity rate was 14.1%, 10.1%, and 18.6%; false negative rate was 15.4%, 0%, and 22.2%; and the negative predictive value was 97.8%, 100%, and 95.2% for all sites, head/neck, and truncal/extremity sites, respectively. SLN biopsy remains an investigational staging tool in clinically node-negative high-risk SCC patients. The higher false negative rate and lower negative predictive value among SCC of the trunk/extremity compared to SCC of the head/neck sites suggests a more cautious approach when treating patients with the former. Given the paucity of long-term follow up, an emphasis is placed upon the need for close surveillance regardless of SLN status.
doi:10.1186/1477-7819-9-80
PMCID: PMC3156743  PMID: 21771334
sentinel lymph node; squamous cell carcinoma; cutaneous; staging
2.  Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori 
BMC Genomics  2010;11:405.
Background
Serine proteases (SPs) and serine proteases homologs (SPHs) are a large group of proteolytic enzymes, with important roles in a variety of physiological processes, such as cell signalling, defense and development. Genome-wide identification and expression analysis of serine proteases and their homologs in the silkworm might provide valuable information about their biological functions.
Results
In this study, 51 SP genes and 92 SPH genes were systematically identified in the genome of the silkworm Bombyx mori. Phylogenetic analysis indicated that six gene families have been amplified species-specifically in the silkworm, and the members of them showed chromosomal distribution of tandem repeats. Microarray analysis suggests that many silkworm-specific genes, such as members of SP_fam12, 13, 14 and 15, show expression patterns that are specific to tissues or developmental stages. The roles of SPs and SPHs in resisting pathogens were investigated in silkworms when they were infected by Escherichia coli, Bacillus bombysepticus, Batrytis bassiana and B. mori nucleopolyhedrovirus, respectively. Microarray experiment and real-time quantitative RT-PCR showed that 18 SP or SPH genes were significantly up-regulated after pathogen induction, suggesting that SP and SPH genes might participate in pathogenic microorganism resistance in B. mori.
Conclusion
Silkworm SP and SPH genes were identified. Comparative genomics showed that SP and SPH genes belong to a large family, whose members are generated mainly by tandem repeat evolution. We found that silkworm has species-specific SP and SPH genes. Phylogenetic and microarray analyses provide an overview of the silkworm SP and SPHs, and facilitate future functional studies on these enzymes.
doi:10.1186/1471-2164-11-405
PMCID: PMC2996933  PMID: 20576138
3.  DNA Methylation in Tumor and Matched Normal Tissues from Non-Small Cell Lung Cancer Patients 
We used MethyLight assays to analyze DNA methylation status of 27 genes on 49 paired cancerous and noncancerous tissue samples from non-small cell lung cancer (NSCLC) patients who underwent surgical resection. Seven genes (RARB, BVES, CDKN2A, KCNH5, RASSF1, CDH13, and RUNX) were found to be methylated significantly more frequently in tumor tissues than in noncancerous tissues. Only methylation of CCND2 and APC was frequently detected in both cancerous and noncancerous tissues, supporting the hypothesis that the methylation of these two genes is a preneoplastic change and may be associated with tobacco smoking exposure. Methylation of any one of eight genes (RASSF1, DAPK1, BVES, CDH13, MGMT, KCNH5, RARB, or CDH1) was present in 80% of NSCLC tissues but only in 14% of noncancerous tissues. Detection of methylation of these genes in blood might have utility in monitoring and detecting tumor recurrence in early-stage NSCLC after curative surgical resection.
doi:10.1158/1055-9965.EPI-07-2518
PMCID: PMC2798850  PMID: 18349282
4.  Donor MHC and adhesion molecules in transplant arteriosclerosis 
Journal of Clinical Investigation  1999;103(4):469-474.
Transplant-associated arteriosclerosis remains an obstacle to long-term graft survival. To determine the contribution to transplant arteriosclerosis of MHC and adhesion molecules from cells of the donor vasculature, we allografted carotid artery loops from six mutant mouse strains into immunocompetent CBA/CaJ recipients. The donor mice were deficient in either MHC I molecules or MHC II molecules, both MHC I and MHC II molecules, the adhesion molecule P-selectin, intercellular adhesion molecule (ICAM)-1, or both P-selectin and ICAM-1. Donor arteries in which ICAM-1, MHC II, or both MHC I and MHC II were absent showed reductions in neointima formation of 52%, 33%, and 38%, respectively, due primarily to a reduction in smooth muscle cell (SMC) accumulation. In P-selectin–deficient donor arteries, neointima formation did not differ from that in controls. In donor arteries lacking both P-selectin and ICAM-1, the size of the neointima was similar to that in those lacking ICAM-1 alone. In contrast, neointima formation increased by 52% in MHC I–deficient donor arteries. The number of CD4-positive T cells increased by 2.8-fold in MHC I–deficient arteries, and that of α-actin–positive SMCs by twofold. These observations indicate that ICAM-1 and MHC II molecules expressed in the donor vessel wall may promote transplant-associated arteriosclerosis. MHC I molecules expressed in the donor may have a protective effect.
PMCID: PMC408097  PMID: 10021454
5.  Mechanisms for Induction of L-Selectin Loss from T Lymphocytes by a Cryptococcal Polysaccharide, Glucuronoxylomannan 
Infection and Immunity  1999;67(1):220-229.
Disseminated cryptococcosis is accompanied by cryptococcal polysaccharides in the serum and the lack of cellular infiltrates in infected tissues. Cryptococcal polysaccharides given intravenously to mice inhibit the influx of T lymphocytes into the sites of cell-mediated immune response. The focus here was to determine whether cryptococcal polysaccharides modulate the expression of molecules, such as L-selectin, that are important in extravasation of T cells. Cryptococcal glucuronoxylomannan (GXM), but not galactoxylomannan or mannoprotein, was found to cause loss of L-selectin from freshly isolated human T cells of both CD4 and CD8 subsets and from Jurkat cells. With the signaling-pathway inhibitors staurosporine (which inhibits protein kinase C) and herbimycin A (which inhibits protein tyrosine kinases), we showed that GXM or the cryptococcal culture filtrate antigen CneF directly induces L-selectin loss from CD4+ and CD8+ T cells via a herbimycin A-sensitive pathway(s) presumably involving one or more protein tyrosine kinases but not via a pathway involving protein kinase C. Loss of L-selectin from the T cells before the T cells have a chance to bind to L-selectin ligands on endothelial cells would be expected to prevent T-cell migration into inflamed tissues and/or lymph organs.
PMCID: PMC96300  PMID: 9864219

Results 1-5 (5)