PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  The Application of the Open Pharmacological Concepts Triple Store (Open PHACTS) to Support Drug Discovery Research 
PLoS ONE  2014;9(12):e115460.
Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.
doi:10.1371/journal.pone.0115460
PMCID: PMC4270790  PMID: 25522365
2.  A network biology workflow to study transcriptomics data of the diabetic liver 
BMC Genomics  2014;15(1):971.
Background
Nowadays a broad collection of transcriptomics data is publicly available in online repositories. Methods for analyzing these data often aim at deciphering the influence of gene expression at the process level. Biological pathway diagrams depict known processes and capture the interactions of gene products and metabolites, information that is essential for the computational analysis and interpretation of transcriptomics data.
The present study describes a comprehensive network biology workflow that integrates differential gene expression in the human diabetic liver with pathway information by building a network of interconnected pathways. Worldwide, the incidence of type 2 diabetes mellitus is increasing dramatically, and to better understand this multifactorial disease, more insight into the concerted action of the disease-related processes is needed. The liver is a key player in metabolic diseases and diabetic patients often develop non-alcoholic fatty liver disease.
Results
A publicly available dataset comparing the liver transcriptome from lean and healthy vs. obese and insulin-resistant subjects was selected after a thorough analysis. Pathway analysis revealed seven significantly altered pathways in the WikiPathways human pathway collection. These pathways were then merged into one combined network with 408 gene products, 38 metabolites and 5 pathway nodes. Further analysis highlighted 17 nodes present in multiple pathways, and revealed the connections between different pathways in the network. The integration of transcription factor-gene interactions from the ENCODE project identified new links between the pathways on a regulatory level. The extension of the network with known drug-target interactions from DrugBank allows for a more complete study of drug actions and helps with the identification of other drugs that target proteins up- or downstream which might interfere with the action or efficiency of a drug.
Conclusions
The described network biology workflow uses state-of-the-art pathway and network analysis methods to study the rewiring of the diabetic liver. The integration of experimental data and knowledge on disease-affected biological pathways, including regulatory elements like transcription factors or drugs, leads to improved insights and a clearer illustration of the overall process. It also provides a resource for building new hypotheses for further follow-up studies. The approach is highly generic and can be applied in different research fields.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-971) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-971
PMCID: PMC4246458  PMID: 25399255
Transcriptomics; Network biology; Pathway analysis; Type 2 diabetes mellitus; Fatty liver; Non-alcoholic fatty liver disease; WikiPathways; PathVisio; Cytoscape
3.  WikiPathways App for Cytoscape: Making biological pathways amenable to network analysis and visualization 
F1000Research  2014;3:152.
In this paper we present the open-source WikiPathways app for Cytoscape ( http://apps.cytoscape.org/apps/wikipathways) that can be used to import biological pathways for data visualization and network analysis. WikiPathways is an open, collaborative biological pathway database that provides fully annotated pathway diagrams for manual download or through web services. The WikiPathways app allows users to load pathways in two different views: as an annotated pathway ideal for data visualization and as a simple network to perform computational analysis. An example pathway and dataset are used to demonstrate the functionality of the WikiPathways app and how they can be combined and used together with other apps. More than 3000 downloads in the first 12 months following its release in August 2013 highlight the importance and adoption of the app in the network biology field.
doi:10.12688/f1000research.4254.2
PMCID: PMC4168754  PMID: 25254103
4.  WikiPathways App for Cytoscape: Making biological pathways amenable to network analysis and visualization 
F1000Research  2014;3:152.
In this paper we present the open-source WikiPathways app for Cytoscape ( http://apps.cytoscape.org/apps/wikipathways) that can be used to import biological pathways for data visualization and network analysis. WikiPathways is an open, collaborative biological pathway database that provides fully annotated pathway diagrams for manual download or through web services. The WikiPathways app allows users to load pathways in two different views: as an annotated pathway ideal for data visualization and as a simple network to perform computational analysis. An example pathway and dataset are used to demonstrate the functionality of the WikiPathways app and how they can be combined and used together with other apps. More than 2000 downloads between its first release in August 2013 and the submission of the paper in May 2014 highlight the importance and adoption of the app in the network biology field.
doi:10.12688/f1000research.4254.1
PMCID: PMC4168754  PMID: 25254103
5.  Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life 
Genes & Nutrition  2013;9(1):378.
Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum’s one gene—one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems’ responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.
doi:10.1007/s12263-013-0378-y
PMCID: PMC3896628  PMID: 24363221
Systems nutrition research; Malnutrition; Health; Essential nutrients for optimal; Underpinning of growth and health
6.  CyTargetLinker: A Cytoscape App to Integrate Regulatory Interactions in Network Analysis 
PLoS ONE  2013;8(12):e82160.
Introduction
The high complexity and dynamic nature of the regulation of gene expression, protein synthesis, and protein activity pose a challenge to fully understand the cellular machinery. By deciphering the role of important players, including transcription factors, microRNAs, or small molecules, a better understanding of key regulatory processes can be obtained. Various databases contain information on the interactions of regulators with their targets for different organisms, data recently being extended with the results of the ENCODE (Encyclopedia of DNA Elements) project. A systems biology approach integrating our understanding on different regulators is essential in interpreting the regulation of molecular biological processes.
Implementation
We developed CyTargetLinker (http://projects.bigcat.unimaas.nl/cytargetlinker), a Cytoscape app, for integrating regulatory interactions in network analysis. Recently we released CyTargetLinker as one of the first apps for Cytoscape 3. It provides a user-friendly and flexible interface to extend biological networks with regulatory interactions, such as microRNA-target, transcription factor-target and/or drug-target. Importantly, CyTargetLinker employs identifier mapping to combine various interaction data resources that use different types of identifiers.
Results
Three case studies demonstrate the strength and broad applicability of CyTargetLinker, (i) extending a mouse molecular interaction network, containing genes linked to diabetes mellitus, with validated and predicted microRNAs, (ii) enriching a molecular interaction network, containing DNA repair genes, with ENCODE transcription factor and (iii) building a regulatory meta-network in which a biological process is extended with information on transcription factor, microRNA and drug regulation.
Conclusions
CyTargetLinker provides a simple and extensible framework for biologists and bioinformaticians to integrate different regulatory interactions into their network analysis approaches. Visualization options enable biological interpretation of complex regulatory networks in a graphical way. Importantly the incorporation of our tool into the Cytoscape framework allows the application of CyTargetLinker in combination with a wide variety of other apps for state-of-the-art network analysis.
doi:10.1371/journal.pone.0082160
PMCID: PMC3855388  PMID: 24340000
7.  User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org 
Nucleic Acids Research  2013;41(Web Server issue):W71-W76.
Quality control (QC) is crucial for any scientific method producing data. Applying adequate QC introduces new challenges in the genomics field where large amounts of data are produced with complex technologies. For DNA microarrays, specific algorithms for QC and pre-processing including normalization have been developed by the scientific community, especially for expression chips of the Affymetrix platform. Many of these have been implemented in the statistical scripting language R and are available from the Bioconductor repository. However, application is hampered by lack of integrative tools that can be used by users of any experience level. To fill this gap, we developed a freely available tool for QC and pre-processing of Affymetrix gene expression results, extending, integrating and harmonizing functionality of Bioconductor packages. The tool can be easily accessed through a wizard-like web portal at http://www.arrayanalysis.org or downloaded for local use in R. The portal provides extensive documentation, including user guides, interpretation help with real output illustrations and detailed technical documentation. It assists newcomers to the field in performing state-of-the-art QC and pre-processing while offering data analysts an integral open-source package. Providing the scientific community with this easily accessible tool will allow improving data quality and reuse and adoption of standards.
doi:10.1093/nar/gkt293
PMCID: PMC3692049  PMID: 23620278
8.  Molecular Pathways Involved in Prostate Carcinogenesis: Insights from Public Microarray Datasets 
PLoS ONE  2012;7(11):e49831.
Background
Prostate cancer is currently the most frequently diagnosed malignancy in men and the second leading cause of cancer-related deaths in industrialized countries. Worldwide, an increase in prostate cancer incidence is expected due to an increased life-expectancy, aging of the population and improved diagnosis. Although the specific underlying mechanisms of prostate carcinogenesis remain unknown, prostate cancer is thought to result from a combination of genetic and environmental factors altering key cellular processes. To elucidate these complex interactions and to contribute to the understanding of prostate cancer progression and metastasis, analysis of large scale gene expression studies using bioinformatics approaches is used to decipher regulation of core processes.
Methodology/Principal Findings
In this study, a standardized quality control procedure and statistical analysis (http://www.arrayanalysis.org/) were applied to multiple prostate cancer datasets retrieved from the ArrayExpress data repository and pathway analysis using PathVisio (http://www.pathvisio.org/) was performed. The results led to the identification of three core biological processes that are strongly affected during prostate carcinogenesis: cholesterol biosynthesis, the process of epithelial-to-mesenchymal transition and an increased metabolic activity.
Conclusions
This study illustrates how a standardized bioinformatics evaluation of existing microarray data and subsequent pathway analysis can quickly and cost-effectively provide essential information about important molecular pathways and cellular processes involved in prostate cancer development and disease progression. The presented results may assist in biomarker profiling and the development of novel treatment approaches.
doi:10.1371/journal.pone.0049831
PMCID: PMC3502280  PMID: 23185449
9.  Toward interoperable bioscience data 
Nature genetics  2012;44(2):121-126.
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision.
doi:10.1038/ng.1054
PMCID: PMC3428019  PMID: 22281772
10.  GO-Elite: a flexible solution for pathway and ontology over-representation 
Bioinformatics  2012;28(16):2209-2210.
Summary: We introduce GO-Elite, a flexible and powerful pathway analysis tool for a wide array of species, identifiers (IDs), pathways, ontologies and gene sets. In addition to the Gene Ontology (GO), GO-Elite allows the user to perform over-representation analysis on any structured ontology annotations, pathway database or biological IDs (e.g. gene, protein or metabolite). GO-Elite exploits the structured nature of biological ontologies to report a minimal set of non-overlapping terms. The results can be visualized on WikiPathways or as networks. Built-in support is provided for over 60 species and 50 ID systems, covering gene, disease and phenotype ontologies, multiple pathway databases, biomarkers, and transcription factor and microRNA targets. GO-Elite is available as a web interface, GenMAPP-CS plugin and as a cross-platform application.
Availability: http://www.genmapp.org/go_elite
Contact: nsalomonis@gladstone.ucsf.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts366
PMCID: PMC3413395  PMID: 22743224
11.  An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies 
BMC Genomics  2012;13:42.
Background
The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate.
Results
We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures.
Conclusion
T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.
doi:10.1186/1471-2164-13-42
PMCID: PMC3293711  PMID: 22276688
12.  WikiPathways: building research communities on biological pathways 
Nucleic Acids Research  2011;40(Database issue):D1301-D1307.
Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.
doi:10.1093/nar/gkr1074
PMCID: PMC3245032  PMID: 22096230
13.  Exploring pathway interactions in insulin resistant mouse liver 
BMC Systems Biology  2011;5:127.
Background
Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset.
Results
We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar.
Conclusions
Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well.
doi:10.1186/1752-0509-5-127
PMCID: PMC3169508  PMID: 21843341
14.  2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting 
BMC Medical Genomics  2011;4:24.
Background
Proteomic technologies applied for profiling human biofluids and blood cells are considered to reveal new biomarkers of exposure or provide insights into novel mechanisms of adaptation.
Methods
Both a non-targeted (classical 2D-electrophoresis combined with mass spectrometry) as well as a targeted proteomic approach (multiplex immunoassay) were applied to investigate how fasting for 36 h, as compared to 12 h, affects the proteome of platelets, peripheral blood mononuclear cells (PBMC), plasma, urine and saliva collected from ten healthy volunteers.
Results
Between-subject variability was highest in the plasma proteome and lowest in the PBMC proteome. Random Forests analysis performed on the entire dataset revealed that changes in the level of the RhoGDI2 protein in PBMC and plasma ApoA4 levels were the two most obvious biomarkers of an extended fasting. Random Forests (RF) analysis of the multiplex immunoassay data revealed leptin and MMP-3 as biomarkers for extended fasting. However, high between-subject variability may have masked the extended fasting effects in the proteome of the biofluids and blood cells.
Conclusions
Identification of significantly changed proteins in biofluids and blood cells using a non-targeted approach, together with the outcome of targeted analysis revealed both known and novel markers for a 36 h fasting period, including the cellular proteins RhoGDI2 and CLIC1, and plasma proteins ApoA4, leptin and MMP-3. The PBMC proteome exhibited the lowest between-subject variability and therefore these cells appear to represent the best biosamples for biomarker discovery in human nutrigenomics.
doi:10.1186/1755-8794-4-24
PMCID: PMC3073865  PMID: 21439033
15.  Connecting the Human Variome Project to nutrigenomics 
Genes & Nutrition  2010;5(4):275-283.
Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.
doi:10.1007/s12263-010-0186-6
PMCID: PMC2989367
Nutrigenomics; Human Variome Project; Harmonization
16.  The Micronutrient Genomics Project: a community-driven knowledge base for micronutrient research 
Genes & Nutrition  2010;5(4):285-296.
Micronutrients influence multiple metabolic pathways including oxidative and inflammatory processes. Optimum micronutrient supply is important for the maintenance of homeostasis in metabolism and, ultimately, for maintaining good health. With advances in systems biology and genomics technologies, it is becoming feasible to assess the activity of single and multiple micronutrients in their complete biological context. Existing research collects fragments of information, which are not stored systematically and are thus not optimally disseminated. The Micronutrient Genomics Project (MGP) was established as a community-driven project to facilitate the development of systematic capture, storage, management, analyses, and dissemination of data and knowledge generated by biological studies focused on micronutrient–genome interactions. Specifically, the MGP creates a public portal and open-source bioinformatics toolbox for all “omics” information and evaluation of micronutrient and health studies. The core of the project focuses on access to, and visualization of, genetic/genomic, transcriptomic, proteomic and metabolomic information related to micronutrients. For each micronutrient, an expert group is or will be established combining the various relevant areas (including genetics, nutrition, biochemistry, and epidemiology). Each expert group will (1) collect all available knowledge, (2) collaborate with bioinformatics teams towards constructing the pathways and biological networks, and (3) publish their findings on a regular basis. The project is coordinated in a transparent manner, regular meetings are organized and dissemination is arranged through tools, a toolbox web portal, a communications website and dedicated publications.
doi:10.1007/s12263-010-0192-8
PMCID: PMC2989004  PMID: 21189865
Micronutrient; Bioinformatics; Database; Genomics
17.  The Micronutrient Genomics Project: a community-driven knowledge base for micronutrient research 
Genes & Nutrition  2010;5(4):285-296.
Micronutrients influence multiple metabolic pathways including oxidative and inflammatory processes. Optimum micronutrient supply is important for the maintenance of homeostasis in metabolism and, ultimately, for maintaining good health. With advances in systems biology and genomics technologies, it is becoming feasible to assess the activity of single and multiple micronutrients in their complete biological context. Existing research collects fragments of information, which are not stored systematically and are thus not optimally disseminated. The Micronutrient Genomics Project (MGP) was established as a community-driven project to facilitate the development of systematic capture, storage, management, analyses, and dissemination of data and knowledge generated by biological studies focused on micronutrient–genome interactions. Specifically, the MGP creates a public portal and open-source bioinformatics toolbox for all “omics” information and evaluation of micronutrient and health studies. The core of the project focuses on access to, and visualization of, genetic/genomic, transcriptomic, proteomic and metabolomic information related to micronutrients. For each micronutrient, an expert group is or will be established combining the various relevant areas (including genetics, nutrition, biochemistry, and epidemiology). Each expert group will (1) collect all available knowledge, (2) collaborate with bioinformatics teams towards constructing the pathways and biological networks, and (3) publish their findings on a regular basis. The project is coordinated in a transparent manner, regular meetings are organized and dissemination is arranged through tools, a toolbox web portal, a communications website and dedicated publications.
doi:10.1007/s12263-010-0192-8
PMCID: PMC2989004  PMID: 21189865
Micronutrient; Bioinformatics; Database; Genomics
18.  Answering biological questions: querying a systems biology database for nutrigenomics 
Genes & Nutrition  2010;6(1):81-87.
The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A particularly urgent objective in coping with the data avalanche is making biologically meaningful information accessible to the researcher. This contribution describes how we intend to meet this objective with the nutritional phenotype database. We outline relevant parts of the system architecture, describe the kinds of data managed by it, and show how the system can support retrieval of biologically meaningful information by means of ontologies, full-text queries, and structured queries. Our contribution points out critical points, describes several technical hurdles. It demonstrates how pathway analysis can improve queries and comparisons for nutrition studies. Finally, three directions for future research are given.
doi:10.1007/s12263-010-0190-x
PMCID: PMC3040802  PMID: 21437033
Querying; Bioinformatics; Nutrigenomics; Systems biology; Biological databases
19.  Answering biological questions: querying a systems biology database for nutrigenomics 
Genes & Nutrition  2010;6(1):81-87.
The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A particularly urgent objective in coping with the data avalanche is making biologically meaningful information accessible to the researcher. This contribution describes how we intend to meet this objective with the nutritional phenotype database. We outline relevant parts of the system architecture, describe the kinds of data managed by it, and show how the system can support retrieval of biologically meaningful information by means of ontologies, full-text queries, and structured queries. Our contribution points out critical points, describes several technical hurdles. It demonstrates how pathway analysis can improve queries and comparisons for nutrition studies. Finally, three directions for future research are given.
doi:10.1007/s12263-010-0190-x
PMCID: PMC3040802  PMID: 21437033
Querying; Bioinformatics; Nutrigenomics; Systems biology; Biological databases
20.  Finding the Right Questions: Exploratory Pathway Analysis to Enhance Biological Discovery in Large Datasets 
PLoS Biology  2010;8(8):e1000472.
This Essay discusses the role of pathways for exploratory data analysis in present-day biology.
doi:10.1371/journal.pbio.1000472
PMCID: PMC2930872  PMID: 20824171
21.  A Combined Transcriptomics and Lipidomics Analysis of Subcutaneous, Epididymal and Mesenteric Adipose Tissue Reveals Marked Functional Differences 
PLoS ONE  2010;5(7):e11525.
Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat feeding of male transgenic ApoE3Leiden mice with histology, targeted lipidomics and biochemical analyses of metabolic pathways to identify differentially regulated processes and site-specific functions. EWAT was found to exhibit physiological zonation. De novo lipogenesis in fat proximal to epididymis was stably low, whereas de novo lipogenesis distal to epididymis and at other locations was down-regulated in response to high-fat diet. The contents of linoleic acid and α-linolenic acid in EWAT were increased compared to other depots. Expression of the androgen receptor (Ar) was higher in EWAT than in MWAT and SWAT. We suggest that Ar may mediate depot-dependent differences in de novo lipogenesis rate and propose that accumulation of linoleic acid and α-linolenic acid in EWAT is favored by testosterone-mediated inhibition of de novo lipogenesis and may promote further elongation and desaturation of these polyunsaturated fatty acids during spermatogenesis.
doi:10.1371/journal.pone.0011525
PMCID: PMC2902507  PMID: 20634946
22.  Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies 
Genes & Nutrition  2010;5(3):189-203.
The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise, which is only sustainable if it is accepted and adopted by the wider nutrition and health research community as an open source, pre-competitive and publicly available resource where many partners both can contribute and profit from its developments. We introduce the Nutrigenomics Organisation (NuGO, http://www.nugo.org) as a membership association responsible for establishing and curating the dbNP. Within NuGO, all efforts related to dbNP (i.e. usage, coordination, integration, facilitation and maintenance) will be directed towards a sustainable and federated infrastructure.
doi:10.1007/s12263-010-0167-9
PMCID: PMC2935528  PMID: 21052526
Nutritional phenotype; Nutrigenomics; Database
23.  Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies 
Genes & Nutrition  2010;5(3):189-203.
The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise, which is only sustainable if it is accepted and adopted by the wider nutrition and health research community as an open source, pre-competitive and publicly available resource where many partners both can contribute and profit from its developments. We introduce the Nutrigenomics Organisation (NuGO, http://www.nugo.org) as a membership association responsible for establishing and curating the dbNP. Within NuGO, all efforts related to dbNP (i.e. usage, coordination, integration, facilitation and maintenance) will be directed towards a sustainable and federated infrastructure.
doi:10.1007/s12263-010-0167-9
PMCID: PMC2935528  PMID: 21052526
Nutritional phenotype; Nutrigenomics; Database
24.  Time-Resolved and Tissue-Specific Systems Analysis of the Pathogenesis of Insulin Resistance 
PLoS ONE  2010;5(1):e8817.
Background
The sequence of events leading to the development of insulin resistance (IR) as well as the underlying pathophysiological mechanisms are incompletely understood. As reductionist approaches have been largely unsuccessful in providing an understanding of the pathogenesis of IR, there is a need for an integrative, time-resolved approach to elucidate the development of the disease.
Methodology/Principal Findings
Male ApoE3Leiden transgenic mice exhibiting a humanized lipid metabolism were fed a high-fat diet (HFD) for 0, 1, 6, 9, or 12 weeks. Development of IR was monitored in individual mice over time by performing glucose tolerance tests and measuring specific biomarkers in plasma, and hyperinsulinemic-euglycemic clamp analysis to assess IR in a tissue-specific manner. To elucidate the dynamics and tissue-specificity of metabolic and inflammatory processes key to IR development, a time-resolved systems analysis of gene expression and metabolite levels in liver, white adipose tissue (WAT), and muscle was performed. During HFD feeding, the mice became increasingly obese and showed a gradual increase in glucose intolerance. IR became first manifest in liver (week 6) and then in WAT (week 12), while skeletal muscle remained insulin-sensitive. Microarray analysis showed rapid upregulation of carbohydrate (only liver) and lipid metabolism genes (liver, WAT). Metabolomics revealed significant changes in the ratio of saturated to polyunsaturated fatty acids (liver, WAT, plasma) and in the concentrations of glucose, gluconeogenesis and Krebs cycle metabolites, and branched amino acids (liver). HFD evoked an early hepatic inflammatory response which then gradually declined to near baseline. By contrast, inflammation in WAT increased over time, reaching highest values in week 12. In skeletal muscle, carbohydrate metabolism, lipid metabolism, and inflammation was gradually suppressed with HFD.
Conclusions/Significance
HFD-induced IR is a time- and tissue-dependent process that starts in liver and proceeds in WAT. IR development is paralleled by tissue-specific gene expression changes, metabolic adjustments, changes in lipid composition, and inflammatory responses in liver and WAT involving p65-NFkB and SOCS3. The alterations in skeletal muscle are largely opposite to those in liver and WAT.
doi:10.1371/journal.pone.0008817
PMCID: PMC2809107  PMID: 20098690
25.  The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services 
BMC Bioinformatics  2010;11:5.
Background
Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services.
Results
Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications.
Conclusion
By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.
doi:10.1186/1471-2105-11-5
PMCID: PMC2824678  PMID: 20047655

Results 1-25 (34)