PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The novel endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo 
Journal of cell science  2012;125(0 4):1048-1057.
Summary
The Lamina-associated polypeptide, Emerin, MAN1 - (LEM) domain defines a group of nuclear proteins, which bind chromatin through interaction of the LEM motif with the conserved DNA cross-linking protein, Barrier-to-Auto-Integration factor (BAF). Here, we describe a novel LEM protein, annotated in databases as “Ankyrin and LEM domain containing protein 1” (ANKLE1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. While most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus, and Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 represents a novel LEM-protein with a GIY-YIG type endonuclease activity in higher eukaryotes.
doi:10.1242/jcs.098392
PMCID: PMC4335191  PMID: 22399800
chromatin; DNA damage; GIY-YIG endonuclease; LEM-domain; nuclear envelope
2.  Inhalative Exposure to Vanadium Pentoxide Causes DNA Damage in Workers: Results of a Multiple End Point Study 
Environmental Health Perspectives  2008;116(12):1689-1693.
Background
Inhalative exposure to vanadium pentoxide (V2O5) causes lung cancer in rodents.
Objective
The aim of the study was to investigate the impact of V2O5 on DNA stability in workers from a V2O5 factory.
Methods
We determined DNA strand breaks in leukocytes of 52 workers and controls using the alkaline comet assay. We also investigated different parameters of chromosomal instability in lymphocytes of 23 workers and 24 controls using the cytokinesis-block micronucleus (MN) cytome method.
Results
Seven of eight biomarkers were increased in blood cells of the workers, and vanadium plasma concentrations in plasma were 7-fold higher than in the controls (0.31 μg/L). We observed no difference in DNA migration under standard conditions, but we found increased tail lengths due to formation of oxidized purines (7%) and pyrimidines (30%) with lesion-specific enzymes (formamidopyrimidine glycosylase and endonuclease III) in the workers. Bleomycin-induced DNA migration was higher in the exposed group (25%), whereas the repair of bleomycin-induced lesions was reduced. Workers had a 2.5-fold higher MN frequency, and nucleoplasmic bridges (NPBs) and nuclear buds (Nbuds) were increased 7-fold and 3-fold, respectively. Also, apoptosis and necrosis rates were higher, but only the latter parameter reached statistical significance.
Conclusions
V2O5 causes oxidation of DNA bases, affects DNA repair, and induces formation of MNs, NPBs, and Nbuds in blood cells, suggesting that the workers are at increased risk for cancer and other diseases that are related to DNA instability.
doi:10.1289/ehp.11438
PMCID: PMC2599764  PMID: 19079721
comet assay; cytokinesis-block micronucleus assay; DNA damage; occupational exposure; vanadium pentoxide

Results 1-2 (2)