Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  An association between the PTGS2 rs5275 polymorphism and colorectal cancer risk in families with inherited non-syndromic predisposition 
European Journal of Human Genetics  2013;21(12):1389-1395.
Recently our group completed a genome-wide linkage study investigating Australian and Spanish families with inherited risk of colorectal cancer (CRC). A minor linkage peak from that study located on chromosome 1 correlates with the location of a known CRC risk-modifying gene, prostaglandin synthase (PTGS2). PTGS2 encodes the inducible prostaglandin synthase enzyme cyclooxygenase-2 (COX-2). Prostaglandins are implicated in the initiation of carcinogenesis and progression of tumours. Sequencing of PTGS2 in a small subset of affected individuals identified a high frequency of the minor C allele of single nucleotide polymorphism rs5275. We then genotyped the rs5275 polymorphism in 183 affected and 223 unaffected individuals from our CRC predisposed families. Tests for association in the presence of linkage were made using family-based association tests. The C allele was found to be significantly associated (P<0.01) with diagnosis of hereditary non-syndromic CRC (P=0.0094, dominant model) and an earlier age of diagnosis (P=0.0089, heterozygous-advantage model). Interestingly, by stratifying the age of diagnosis data, we observed a speculative gender-discordant effect. Relative to other groups, female CC carriers were diagnosed less when young, but by 60 years of age were the most at risk group. Conversely, CT carriers of both genders showed a consistently earlier diagnosis relative to TT carriers. Our results suggest potential differential age-and gender-dependent efficacies of chemopreventative COX-2 inhibitors in the context of non-syndromic colorectal cancer.
PMCID: PMC3831072  PMID: 23531863
PTGS2; COX-2; rs5275; colorectal; cancer; hereditary
2.  A panel of genes methylated with high frequency in colorectal cancer 
BMC Cancer  2014;14:54.
The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.
Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP).
Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas.
This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.
PMCID: PMC3924905  PMID: 24485021
Colorectal cancer; DNA methylation; Biomarker
3.  Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis 
We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis.
PMCID: PMC3865590  PMID: 24498618
Autosomal recessive craniosynostosis; Crouzon; FGFR2; IL11RA; tooth erruption; supernumerary teeth
4.  A genome-wide association study identifies susceptibility loci for non-syndromic sagittal craniosynostosis near BMP2 and within BBS9 
Nature genetics  2012;44(12):1360-1364.
Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one of 5,000 newborns. We conducted the first genome-wide association study (GWAS) for non-syndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic white (NHW) case-parent trios. Robust associations were observed in a 120 kb region downstream of BMP2, flanked by rs1884302 (P = 1.13 × 10−14; odds ratio [OR] = 4.58) and rs6140226 (P = 3.40 × 10−11; OR = 0.24) and within a 167 kb region of BBS9 between rs10262453 (P = 1.61 × 10−10; OR=0.19) and rs17724206 (P = 1.50 × 10−8; OR = 0.22). We replicated the associations to both loci [rs1884302 (P = 4.39 × 10−31); rs10262453 (P = 3.50 × 10−14)] in an independent NHW population of 172 unrelated sNSC probands and 548 controls. Both BMP2 and BBS9 are genes with a role in skeletal development warranting functional studies to further understand the etiology of sNSC.
PMCID: PMC3736322  PMID: 23160099
genome-wide association study; non-syndromic sagittal craniosynostosis; BMP2; BBS9; meta-analysis; nonsyndromic
5.  Leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) is a modulator of FGFR1 
Febs Letters  2012;586(10):1516-1521.
Fibroblast growth factor receptors (FGFRs) play critical roles in craniofacial and skeletal development via multiple signaling pathways including MAPK, PI3K/AKT, and PLC-γ. FGFR-mediated signaling is modulated by several regulators. Proteins with leucine-rich repeat (LRR) and/or immunoglobulin (IG) superfamily domains have been suggested to interact with FGFRs. In addition, fibronectin leucine-rich repeat transmembrane protein 3 (FLRT3) has been shown to modulate the FGFR-mediated signaling via the fibronectin type III (FNIII) domain. Therefore proteins with LRR, IG, and FNIII are candidate regulators of the FGFRs. Here we identify leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) as a regulator of the FGFRs.
PMCID: PMC3372856  PMID: 22673519
Craniofacial development; ER export; FGFR regulation; FGF signaling; non-syndromic craniosynostosis
6.  A Molecular Phylogeny of Plesiorycteropus Reassigns the Extinct Mammalian Order ‘Bibymalagasia’ 
PLoS ONE  2013;8(3):e59614.
Madagascar is well known for its diverse fauna and flora, being home to many species not found anywhere else in the world. However, its biodiversity in the recent past included a range of extinct enigmatic fauna, such as elephant birds, giant lemurs and dwarfed hippopotami. The ‘Malagasy aardvark’ (Plesiorycteropus) has remained one of Madagascar’s least well-understood extinct species since its discovery in the 19th century. Initially considered a close relative of the aardvark (Orycteropus) within the order Tubulidentata, more recent morphological analyses challenged this placement on the grounds that the identifiably derived traits supporting this allocation were adaptations to digging rather than shared ancestry. Because the skeletal evidence showed many morphological traits diagnostic of different eutherian mammal orders, they could not be used to resolve its closest relatives. As a result, the genus was tentatively assigned its own taxonomic order ‘Bibymalagasia’, yet how this order relates to other eutherian mammal orders remains unclear despite numerous morphological investigations. This research presents the first known molecular sequence data for Plesiorycteropus, obtained from the bone protein collagen (I), which places the ‘Malagasy aardvark’ as more closely related to tenrecs than aardvarks. More specifically, Plesiorycteropus was recovered within the order Tenrecoidea (golden moles and tenrecs) within Afrotheria, suggesting that the taxonomic order ‘Bibymalagasia’ is obsolete. This research highlights the potential for collagen sequencing in investigating the phylogeny of extinct species as a viable alternative to ancient DNA (aDNA) sequencing, particularly in cases where aDNA cannot be recovered.
PMCID: PMC3608660  PMID: 23555726
7.  Estimation of data-specific constitutive exons with RNA-Seq data 
BMC Bioinformatics  2013;14:31.
RNA-Seq has the potential to answer many diverse and interesting questions about the inner workings of cells. Estimating changes in the overall transcription of a gene is not straightforward. Changes in overall gene transcription can easily be confounded with changes in exon usage which alter the lengths of transcripts produced by a gene. Measuring the expression of constitutive exons— exons which are consistently conserved after splicing— offers an unbiased estimation of the overall transcription of a gene.
We propose a clustering-based method, exClust, for estimating the exons that are consistently conserved after splicing in a given data set. These are considered as the exons which are “constitutive” in this data. The method utilises information from both annotation and the dataset of interest. The method is implemented in an openly available R function package, sydSeq.
When used on two real datasets exClust includes more than three times as many reads as the standard UI method, and improves concordance with qRT-PCR data. When compared to other methods, our method is shown to produce robust estimates of overall gene transcription.
PMCID: PMC3656776  PMID: 23360225
8.  Improved moderation for gene-wise variance estimation in RNA-Seq via the exploitation of external information 
BMC Genomics  2013;14(Suppl 1):S9.
The cost of RNA-Seq has been decreasing over the last few years. Despite this, experiments with four or less biological replicates are still quite common. Estimating the variances of gene expression estimates becomes both a challenging and interesting problem in these situations of low replication. However, with the wealth of microarray and other publicly available gene expression data readily accessible on public repositories, these sources of information can be leveraged to make improvements in variance estimation.
We have proposed a novel approach called Tshrink+ for inferring differential gene expression through improved modelling of the gene-wise variances. Existing methods share information between genes of similar average expression by shrinking, or moderating, the gene-wise variances to a fitted common variance. We have been able to achieve improved estimation of the common variance by using gene-wise sample variances from external experiments, as well as gene length.
Using biological data we show that utilising additional external information can improve the modelling of the common variance and hence the calling of differentially expressed genes. These sources of additional information include gene length and gene-wise sample variances from other RNA-Seq and microarray datasets, of both related and seemingly unrelated tissue types. The results of this are promising, with our differential expression test, Tshrink+, performing favourably when compared to existing methods such as DESeq and edgeR when considering both gene ranking and sensitivity. These improved variance models could easily be implemented in both DESeq and edgeR and highlight the need for a database that offers a profile of gene variances over a range of tissue types and organisms.
PMCID: PMC3549800  PMID: 23368783
9.  Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2 
European Journal of Human Genetics  2012;20(12):1203-1208.
Myotonic dystrophy is an autosomal dominant, multisystem disorder that is characterized by myotonic myopathy. The symptoms and severity of myotonic dystrophy type l (DM1) ranges from severe and congenital forms, which frequently result in death because of respiratory deficiency, through to late-onset baldness and cataract. In adult patients, cardiac conduction abnormalities may occur and cause a shorter life span. In subsequent generations, the symptoms in DM1 may present at an earlier age and have a more severe course (anticipation). In myotonic dystrophy type 2 (DM2), no anticipation is described, but cardiac conduction abnormalities as in DM1 are observed and patients with DM2 additionally have muscle pain and stiffness. Both DM1 and DM2 are caused by unstable DNA repeats in untranslated regions of different genes: A (CTG)n repeat in the 3'-UTR of the DMPK gene and a (CCTG)n repeat in intron 1 of the CNBP (formerly ZNF9) gene, respectively. The length of the (CTG)n repeat expansion in DM1 correlates with disease severity and age of onset. Nevertheless, these repeat sizes have limited predictive values on individual bases. Because of the disease characteristics in DM1 and DM2, appropriate molecular testing and reporting is very important for the optimal counseling in myotonic dystrophy. Here, we describe best practice guidelines for clinical molecular genetic analysis and reporting in DM1 and DM2, including presymptomatic and prenatal testing.
PMCID: PMC3499739  PMID: 22643181
10.  Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice 
Nutrigenetics and nutrigenomics hold much promise for providing better nutritional advice to the public generally, genetic subgroups and individuals. Because nutrigenetics and nutrigenomics require a deep understanding of nutrition, genetics and biochemistry and ever new ‘omic’ technologies, it is often difficult, even for educated professionals, to appreciate their relevance to the practice of preventive approaches for optimising health, delaying onset of disease and diminishing its severity. This review discusses (i) the basic concepts, technical terms and technology involved in nutrigenetics and nutrigenomics; (ii) how this emerging knowledge can be applied to optimise health, prevent and treat diseases; (iii) how to read, understand and interpret nutrigenetic and nutrigenomic research results, and (iv) how this knowledge may potentially transform nutrition and dietetic practice, and the implications of such a transformation. This is in effect an up-to-date overview of the various aspects of nutrigenetics and nutrigenomics relevant to health practitioners who are seeking a better understanding of this new frontier in nutrition research and its potential application to dietetic practice.
PMCID: PMC3121546  PMID: 21625170
Dietetics; Nutrigenetics; Nutrigenomics; Nutrition Research; Personalised nutrition
11.  Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan 
Nature genetics  2012;44(5):581-585.
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant α-dystroglycan (αDG) glycosylation. Here, we report mutations in the isoprenoid synthase domain-containing (ISPD) gene as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but its role in chordates has been obscure to date because this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated αDG. These results implicate a role for ISPD in αDG glycosylation to maintain sarcolemma integrity in vertebrates.
PMCID: PMC3378661  PMID: 22522421
12.  Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice 
PLoS Genetics  2011;7(9):e1002278.
The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia.
Author Summary
Although twin and family studies have shown that genes play a critical role in the timing of fusion of skull bones, the identification of specific genes that may be involved has remained somewhat elusive except in the case of the dominantly inherited craniosynostosis syndromes. Metopic craniosynostosis (MC), the early fusion of the forehead (frontal) bones, accounts for 5%–15% of all craniosynostosis cases. This premature fusion of the frontal bones results in a characteristically altered skull shape, termed trigonocephaly, that usually requires surgical correction. Remarkably, the cause of the majority of cases of MC remains unknown (idiopathic). Here, we report genetic variants involving chromosome 9 which involve and interrupt the structure of the FREM1 gene in a large cohort of patients presenting with unisutural metopic craniosynostosis. Micro-computed tomographic (microCT) imaging and quantitative analysis of skull shape reveal both premature fusion of the PF suture (metopic equivalent) and also changes in frontal bone shape supportive of a role for Frem1 in regulation of the metopic suture. Taken together with Frem1 gene and protein expression findings, these data indicate that mutations in FREM1 can give rise to metopic craniosynostosis.
PMCID: PMC3169541  PMID: 21931569
13.  Dinosaur Peptides Suggest Mechanisms of Protein Survival 
PLoS ONE  2011;6(6):e20381.
Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.
PMCID: PMC3110760  PMID: 21687667
14.  A Phase II Trial of Sorafenib in Metastatic Melanoma with Tissue Correlates 
PLoS ONE  2010;5(12):e15588.
Sorafenib monotherapy in patients with metastatic melanoma was explored in this multi-institutional phase II study. In correlative studies the impact of sorafenib on cyclin D1 and Ki67 was assessed.
Methodology/Principal Findings
Thirty-six patients treatment-naïve advanced melanoma patients received sorafenib 400 mg p.o. twice daily continuously. Tumor BRAFV600E mutational status was determined by routine DNA sequencing and mutation-specific PCR (MSPCR). Immunohistochemistry (IHC) staining for cyclin D1 and Ki67 was performed on available pre- and post treatment tumor samples. The main toxicities included diarrhea, alopecia, rash, mucositis, nausea, hand-foot syndrome, and intestinal perforation. One patient had a RECIST partial response (PR) lasting 175 days. Three patients experienced stable disease (SD) with a mean duration of 37 weeks. Routine BRAFV600E sequencing yielded 27 wild-type (wt) and 6 mutant tumors, whereas MSPCR identified 12 wt and 18 mutant tumors. No correlation was seen between BRAFV600E mutational status and clinical activity. No significant changes in expression of cyclin D1 or Ki67 with sorafenib treatment were demonstrable in the 15 patients with pre-and post-treatment tumor samples.
Sorafenib monotherapy has limited activity in advanced melanoma patients. BRAFV600E mutational status of the tumor was not associated with clinical activity and no significant effect of sorafenib on cyclin D1 or Ki67 was seen, suggesting that sorafenib is not an effective BRAF inhibitor or that additional signaling pathways are equally important in the patients who benefit from sorafenib.
Trial registration
Clinical NCT00119249
PMCID: PMC3012061  PMID: 21206909
15.  Measurement of the clinical utility of a combined mutation detection protocol in carriers of Duchenne and Becker muscular dystrophy 
Journal of Medical Genetics  2007;44(6):368-372.
Recent methodological advances have improved the detection rate for dystrophin mutations, but there are no published studies that have measured the clinical utility of these protocols for carrier detection compared with conventional carrier testing protocols that use pedigree, serum creatine kinase levels and linkage analysis.
Methods and subjects
The clinical utility of a combined mutation detection protocol was measured. It involved quantitative PCR procedures followed by DNA sequence analysis for the identification of dystrophin mutation carriers in 2101 women at risk of being carriers from 348 mutation‐known Duchenne or Becker muscular dystrophy pedigrees.
The combined mutation detection protocol identified a mutation in 96% and 82% of index cases of Duchenne muscular dystrophy and Becker muscular dystrophy, respectively. An additional 692 (33%) potential carriers were correctly classified by the combined mutation detection protocol compared with pedigree, serum creatine kinase levels and linkage analysis. Significantly lower mutation carrier rates were identified in the mothers of isolated cases with deletion mutations than predicted from theoretical considerations, but these findings were not confirmed for duplication and DNA sequence mutations.
There are significant clinical benefits to be gained from a combined mutation detection protocol for carrier detection. It is recommended that mutation‐specific carrier frequencies for the different classes of dystrophin mutations should be taken into account in genetic counselling practice.
PMCID: PMC2740880  PMID: 17259292
16.  Dystrophin Gene Mutation Location and the Risk of Cognitive Impairment in Duchenne Muscular Dystrophy 
PLoS ONE  2010;5(1):e8803.
A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms.
Methods and Results
Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children's Hospital (SCH). All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD) mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ) in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008), in contrast to results in previous publications. In 58 cases (94%) it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented.
These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS) expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk.
PMCID: PMC2808359  PMID: 20098710
17.  Genome-wide association study identifies novel breast cancer susceptibility loci 
Easton, Douglas F. | Pooley, Karen A. | Dunning, Alison M. | Pharoah, Paul D. P. | Thompson, Deborah | Ballinger, Dennis G. | Struewing, Jeffery P. | Morrison, Jonathan | Field, Helen | Luben, Robert | Wareham, Nicholas | Ahmed, Shahana | Healey, Catherine S. | Bowman, Richard | Meyer, Kerstin B. | Haiman, Christopher A. | Kolonel, Laurence K. | Henderson, Brian E. | Marchand, Loic Le | Brennan, Paul | Sangrajrang, Suleeporn | Gaborieau, Valerie | Odefrey, Fabrice | Shen, Chen-Yang | Wu, Pei-Ei | Wang, Hui-Chun | Eccles, Diana | Evans, D. Gareth | Peto, Julian | Fletcher, Olivia | Johnson, Nichola | Seal, Sheila | Stratton, Michael R. | Rahman, Nazneen | Chenevix-Trench, Georgia | Bojesen, Stig E. | Nordestgaard, Børge G. | Axelsson, Christen K. | Garcia-Closas, Montserrat | Brinton, Louise | Chanock, Stephen | Lissowska, Jolanta | Peplonska, Beata | Nevanlinna, Heli | Fagerholm, Rainer | Eerola, Hannaleena | Kang, Daehee | Yoo, Keun-Young | Noh, Dong-Young | Ahn, Sei-Hyun | Hunter, David J. | Hankinson, Susan E. | Cox, David G. | Hall, Per | Wedren, Sara | Liu, Jianjun | Low, Yen-Ling | Bogdanova, Natalia | Schürmann, Peter | Dörk, Thilo | Tollenaar, Rob A. E. M. | Jacobi, Catharina E. | Devilee, Peter | Klijn, Jan G. M. | Sigurdson, Alice J. | Doody, Michele M. | Alexander, Bruce H. | Zhang, Jinghui | Cox, Angela | Brock, Ian W. | MacPherson, Gordon | Reed, Malcolm W. R. | Couch, Fergus J. | Goode, Ellen L. | Olson, Janet E. | Meijers-Heijboer, Hanne | van den Ouweland, Ans | Uitterlinden, André | Rivadeneira, Fernando | Milne, Roger L. | Ribas, Gloria | Gonzalez-Neira, Anna | Benitez, Javier | Hopper, John L. | McCredie, Margaret | Southey, Melissa | Giles, Graham G. | Schroen, Chris | Justenhoven, Christina | Brauch, Hiltrud | Hamann, Ute | Ko, Yon-Dschun | Spurdle, Amanda B. | Beesley, Jonathan | Chen, Xiaoqing | Mannermaa, Arto | Kosma, Veli-Matti | Kataja, Vesa | Hartikainen, Jaana | Day, Nicholas E. | Cox, David R. | Ponder, Bruce A. J. | Luccarini, Craig | Conroy, Don | Shah, Mitul | Munday, Hannah | Jordan, Clare | Perkins, Barbara | West, Judy | Redman, Karen | Driver, Kristy | Aghmesheh, Morteza | Amor, David | Andrews, Lesley | Antill, Yoland | Armes, Jane | Armitage, Shane | Arnold, Leanne | Balleine, Rosemary | Begley, Glenn | Beilby, John | Bennett, Ian | Bennett, Barbara | Berry, Geoffrey | Blackburn, Anneke | Brennan, Meagan | Brown, Melissa | Buckley, Michael | Burke, Jo | Butow, Phyllis | Byron, Keith | Callen, David | Campbell, Ian | Chenevix-Trench, Georgia | Clarke, Christine | Colley, Alison | Cotton, Dick | Cui, Jisheng | Culling, Bronwyn | Cummings, Margaret | Dawson, Sarah-Jane | Dixon, Joanne | Dobrovic, Alexander | Dudding, Tracy | Edkins, Ted | Eisenbruch, Maurice | Farshid, Gelareh | Fawcett, Susan | Field, Michael | Firgaira, Frank | Fleming, Jean | Forbes, John | Friedlander, Michael | Gaff, Clara | Gardner, Mac | Gattas, Mike | George, Peter | Giles, Graham | Gill, Grantley | Goldblatt, Jack | Greening, Sian | Grist, Scott | Haan, Eric | Harris, Marion | Hart, Stewart | Hayward, Nick | Hopper, John | Humphrey, Evelyn | Jenkins, Mark | Jones, Alison | Kefford, Rick | Kirk, Judy | Kollias, James | Kovalenko, Sergey | Lakhani, Sunil | Leary, Jennifer | Lim, Jacqueline | Lindeman, Geoff | Lipton, Lara | Lobb, Liz | Maclurcan, Mariette | Mann, Graham | Marsh, Deborah | McCredie, Margaret | McKay, Michael | McLachlan, Sue Anne | Meiser, Bettina | Milne, Roger | Mitchell, Gillian | Newman, Beth | O'Loughlin, Imelda | Osborne, Richard | Peters, Lester | Phillips, Kelly | Price, Melanie | Reeve, Jeanne | Reeve, Tony | Richards, Robert | Rinehart, Gina | Robinson, Bridget | Rudzki, Barney | Salisbury, Elizabeth | Sambrook, Joe | Saunders, Christobel | Scott, Clare | Scott, Elizabeth | Scott, Rodney | Seshadri, Ram | Shelling, Andrew | Southey, Melissa | Spurdle, Amanda | Suthers, Graeme | Taylor, Donna | Tennant, Christopher | Thorne, Heather | Townshend, Sharron | Tucker, Kathy | Tyler, Janet | Venter, Deon | Visvader, Jane | Walpole, Ian | Ward, Robin | Waring, Paul | Warner, Bev | Warren, Graham | Watson, Elizabeth | Williams, Rachael | Wilson, Judy | Winship, Ingrid | Young, Mary Ann | Bowtell, David | Green, Adele | deFazio, Anna | Chenevix-Trench, Georgia | Gertig, Dorota | Webb, Penny
Nature  2007;447(7148):1087-1093.
Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.
PMCID: PMC2714974  PMID: 17529967
18.  Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients 
Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression.
The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients.
Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients.
Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients.
PMCID: PMC2627832  PMID: 19025658
19.  The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo 
Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer.
Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC).
Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0–10.0 μM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes.
Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer.
PMCID: PMC2100044  PMID: 17935615
20.  Many questions remain unanswered 
BMJ : British Medical Journal  2006;333(7575):967-968.
PMCID: PMC1633795  PMID: 17082552
21.  Next-generation genetic testing for retinitis pigmentosa 
Human Mutation  2012;33(6):963-972.
Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next-generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X-linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling.
PMCID: PMC3490376  PMID: 22334370
NGS; DNA diagnostics; clinical molecular diagnostics; retinitis pigmentosa; blindness

Results 1-21 (21)