PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Learning the specific quality of taste reinforcement in larval Drosophila 
eLife  null;4:e04711.
The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain.
DOI: http://dx.doi.org/10.7554/eLife.04711.001
eLife digest
Actions have consequences; positive consequences or rewards make it more likely that a behavior will be repeated, while negative consequences or punishments can stop a behavior occurring again. Neuroscientists commonly refer to such rewards and punishments as ‘reinforcement’.
Fruit flies that are given a reward of sugar when they experience an odor will move towards the odor in later tests. However, in 2011, research revealed that if the flies were given at least the same amount of sugar in the tests as they were rewarded with during the earlier training, the flies stopped moving towards the odor. This suggests that fruit flies can recall how strong a reward was in the past and compare this remembered strength to the current reward on offer; fruit flies will only continue searching if they expect to gain a larger reward by doing so.
Insects were commonly thought to only learn the amount or ‘value’ of reinforcement, but not recall what kind or ‘quality’ of reward (or punishment) they had experienced. Now Schleyer et al.—including some of the researchers involved in the 2011 work—challenge and extend this notion and show that fruit fly larvae can remember both the value and quality of rewards and punishments.
Fruit fly larvae were trained to expect a reward of sugar when exposed to one odor and nothing when exposed to a different odor. Consistent with the previous results, the larvae moved towards the first odor in the tests where no additional reward was provided. Moreover, the larvae did not move towards the odor in later tests if an equal or greater amount of sugar was provided during the testing stage.
Schleyer et al. then took larvae that had been trained to expect a sugar reward and gave them a different, but equally valuable, reward during the testing stage—in this case, the reward was an amino acid called aspartic acid. These experiments revealed that most of the larvae continued to move towards the sugar-associated odor in search of the sugar reward. This indicates that the larvae were able to remember the quality of the reward, namely that it was sugar rather than aspartic acid.
Schleyer et al. performed similar experiments, and observed similar results, when using two different punishments: bitter-tasting quinine and high concentrations of salt. These findings show that experiencing an odor along with taste reinforcement could set up a memory specific to the quality of reinforcement in fruit fly larvae. Given the numerical simplicity of a larva's brain—which contains only 10,000 neurons—it is likely that other animals can also recall both the value and quality of a reward or punishment. However, understanding how such specificity comes about should be easier in the larva's simple brain.
DOI: http://dx.doi.org/10.7554/eLife.04711.002
doi:10.7554/eLife.04711
PMCID: PMC4302267  PMID: 25622533
punishment; reward; valence; memory; olfaction; taste; D. melanogaster
2.  Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons 
PLoS ONE  2008;3(7):e2610.
Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b) for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed.
doi:10.1371/journal.pone.0002610
PMCID: PMC2440521  PMID: 18612414
3.  An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males 
PLoS ONE  2007;2(8):e661.
Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly.
doi:10.1371/journal.pone.0000661
PMCID: PMC1937024  PMID: 17710124
4.  The period gene and allochronic reproductive isolation in Bactrocera cucurbitae. 
Clock genes that pleiotropically control circadian rhythm and the time of mating may cause allochronic reproductive isolation in the melon fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Flies with a shorter circadian period (ca. 22 h of locomotor activity rhythm) mated 5 h earlier in the day than those with a longer circadian period (ca. 30 h). Mate-choice tests demonstrated significant pre-mating isolation between populations with short and long circadian periods. Pre-mating isolation did not occur when the mating time was synchronized between the two populations by photoperiodic controls, indicating that reproductive isolation is due to variations in the time of mating and not any unidentified ethological difference between the two populations. We cloned the period (per) gene of B. cucurbitae that is homologous to the per gene in Drosophila. The relative level of per mRNA in the melon fly exhibited a robust daily fluctuation under light : dark conditions. The fluctuation of per expression under dark : dark conditions is closely correlated to the locomotor rhythm in B. cucurbitae. These results suggest that clock genes can cause reproductive isolation via the pleiotropic effect as a change of mating time.
doi:10.1098/rspb.2002.2152
PMCID: PMC1691176  PMID: 12495490
5.  timrit Lengthens Circadian Period in a Temperature-Dependent Manner through Suppression of PERIOD Protein Cycling and Nuclear Localization 
Molecular and Cellular Biology  1999;19(6):4343-4354.
A fundamental feature of circadian clocks is temperature compensation of period. The free-running period of ritsu (timrit) (a novel allele of timeless [tim]) mutants is drastically lengthened in a temperature-dependent manner. PER and TIM protein levels become lower in timrit mutants as temperature becomes higher. This mutation reduces per mRNA but not tim mRNA abundance. PER constitutively driven by the rhodopsin1 promoter is lowered in rit mutants, indicating that timrit mainly affects the per feedback loop at a posttranscriptional level. An excess of per+ gene dosage can ameliorate all rit phenotypes, including the weak nuclear localization of PER, suggesting that timrit affects circadian rhythms by reducing PER abundance and its subsequent transportation into nuclei as temperature increases.
PMCID: PMC104394  PMID: 10330175

Results 1-5 (5)