Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Ozaki, kamiko")
1.  Chemical Discrimination and Aggressiveness via Cuticular Hydrocarbons in a Supercolony-Forming Ant, Formica yessensis 
PLoS ONE  2012;7(10):e46840.
Territorial boundaries between conspecific social insect colonies are maintained through nestmate recognition systems. However, in supercolony-forming ants, which have developed an extraordinary social organization style known as unicoloniality, a single supercolony extends across large geographic distance. The underlying mechanism is considered to involve less frequent occurrence of intraspecific aggressive behaviors, while maintaining interspecific competition. Thus, we examined whether the supercolony-forming species, Formica yessensis has a nestmate recognition system similar to that of the multicolonial species, Camponotus japonicus with respect to the cuticular hydrocarbon-sensitive sensillum (CHC sensillum), which responds only to non-nestmate CHCs. We further investigated whether the sensory system reflects on the apparent reduced aggression between non-nestmates typical to unicolonial species.
Methodology/Principal Findings
F. yessensis constructs supercolonies comprising numerous nests and constitutes the largest supercolonies in Japan. We compared the within-colony or between-colonies’ (1) similarity in CHC profiles, the nestmate recognition cues, (2) levels of the CHC sensillar response, (3) levels of aggression between workers, as correlated with geographic distances between nests, and (4) their genetic relatedness. Workers from nests within the supercolony revealed a greater similarity of CHC profiles compared to workers from colonies outside it. Total response of the active CHC sensilla stimulated with conspecific alien CHCs did not increase as much as in case of C. japonicus, suggesting that discrimination of conspecific workers at the peripheral system is limited. It was particularly limited among workers within a supercolony, but was fully expressed for allospecific workers.
We demonstrate that chemical discrimination between nestmates and non-nestmates in F. yessensis was not clear cut, probably because this species has only subtle intraspecific differences in the CHC pattern that typify within a supercolony. Such an incomplete chemical discrimination via the CHC sensilla is thus an important factor contributing to decreased occurrence of intraspecific aggressive behavior especially within a supercolony.
PMCID: PMC3480379  PMID: 23115632
2.  Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa 
Intraspecific variation in mating signals and preferences can be a potential source of incipient speciation. Variable crossability between Drosophila melanogaster and D. simulans among different strains suggested the abundance of such variations. A particular focus on one combination of D. melanogaster strains, TW1(G23) and Mel6(G59), that showed different crossabilities to D. simulans, revealed that the mating between females from the former and males from the latter occurs at low frequency. The cuticular hydrocarbon transfer experiment indicated that cuticular hydrocarbons of TW1 females have an inhibitory effect on courtship by Mel6 males. A candidate component, a C25 diene, was inferred from the gas chromatography analyses. The intensity of male refusal of TW1 females was variable among different strains of D. melanogaster, which suggested the presence of variation in sensitivity to different chemicals on the cuticle. Such variation could be a potential factor for the establishment of premating isolation under some conditions.
PMCID: PMC3321289  PMID: 22536539
3.  Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors 
There are many orphan G protein-coupled receptors (GPCRs) for which ligands have not yet been identified. One such GPCR is the bombesin receptor subtype 3 (BRS-3). BRS-3 plays a role in the onset of diabetes and obesity. GPCRs in invertebrates are similar to those in vertebrates. Two Drosophila GPCRs (CG30106 and CG14593) belong to the BRS-3 phylogenetic subgroup. Here, we succeeded to biochemically purify the endogenous ligands of Drosophila CG30106 and CG14593 from whole Drosophila homogenates using functional assays with the reverse pharmacological technique, and identified their primary amino acid sequences. The purified ligands had been termed CCHamide-1 and CCHamide-2, although structurally identical to the peptides recently predicted from the genomic sequence searching. In addition, our biochemical characterization demonstrated two N-terminal extended forms of CCHamide-2. When administered to blowflies, CCHamide-2 increased their feeding motivation. Our results demonstrated these peptides actually present as the major components to activate these receptors in living Drosophila. Studies on the effects of CCHamides will facilitate the search for BRS-3 ligands.
PMCID: PMC3533232  PMID: 23293632
GPCR; novel bioactive peptide; Drosophila; CCHamide; bombesin receptor subtype 3
4.  Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae) 
The exploitation of parental care is common in avian and insect ‘cuckoos’ and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N. fusca caterpillars chemically mimic host larvae, or some particular castes of the host ant, so that the caterpillars are accepted and cared for by the host workers. Behaviourally, it was observed that the host workers enthusiastically tended glass dummies coated with the cuticular chemicals of larvae or males and those of N. fusca caterpillars living together. Cuticular chemical analyses revealed that N. fusca caterpillars grown in a host ant nest acquired a colony-specific blend of cuticular hydrocarbons (CHCs). Furthermore, the CHC profiles of the N. fusca caterpillars were particularly close to those of the males rather than those of the host larvae and the others. We suggest that N. fusca caterpillars exploit worker care by matching their cuticular profile to that of the host males, since the males are fed by trophallaxis with workers in their natal nests for approximately ten months.
PMCID: PMC2664337  PMID: 18842547
lycaenidae; ants; social parasite; cuticular hydrocarbons; chemical mimicry; brood parasite
5.  An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males 
PLoS ONE  2007;2(8):e661.
Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly.
PMCID: PMC1937024  PMID: 17710124

Results 1-5 (5)