PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Incipient speciation in Drosophila melanogaster involves chemical signals 
Scientific Reports  2012;2:224.
The sensory and genetic bases of incipient speciation between strains of Drosophila melanogaster from Zimbabwe and those from elsewhere are unknown. We studied mating behaviour between eight strains – six from Zimbabwe, together with two cosmopolitan strains. The Zimbabwe strains showed significant sexual isolation when paired with cosmopolitan males, due to Zimbabwe females discriminating against these males. Our results show that flies' cuticular hydrocarbons (CHs) were involved in this sexual isolation, but that visual and acoustic signals were not. The mating frequency of Zimbabwe females was highly significantly negatively correlated with the male's relative amount of 7-tricosene (%7-T), while the mating of cosmopolitan females was positively correlated with %7-T. Variation in transcription levels of two hydrocarbon-determining genes, desat1 and desat2, did not correlate with the observed mating patterns. Our study represents a step forward in our understanding of the sensory processes involved in this classic case of incipient speciation.
doi:10.1038/srep00224
PMCID: PMC3261631  PMID: 22355738
2.  A glial amino-acid transporter controls synapse strength and homosexual courtship in Drosophila 
Nature neuroscience  2007;11(1):54-61.
Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically.
doi:10.1038/nn2019
PMCID: PMC2196133  PMID: 18066061
3.  A Drosophila male pheromone affects female sexual receptivity 
Sex pheromones are chemical signals frequently required for mate choice, but their reciprocal role on mate preference has rarely been shown in both sexes. In Drosophila melanogaster flies, the predominant cuticular hydrocarbons (CHs) are sexually dimorphic: only females produce 7,11-dienes, whereas 7-tricosene (7-T) is the principal male CH. Males generally prefer females with 7,11-dienes, but the role of 7-T on female behaviour remains unclear. With perfumed males, control females mated faster and more often with males carrying increased levels of 7-T showing that this CH acts as a chemical stimulant for D. melanogaster females. Control females—but not antenna-less females—could detect small variation of 7-T. Finally, our finding that desat1 mutant female showed altered response towards 7-T provides an additional role for this gene which affects the production and the perception of pheromones involved in mate choice, in both sexes.
doi:10.1098/rspb.2005.3332
PMCID: PMC1560049  PMID: 16543174
male pheromone; 7-tricosene; female receptivity; antenna; desat1; Drosophila

Results 1-3 (3)