Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Identification and Biosynthesis of Novel Male Specific Esters in the Wings of the Tropical Butterfly, Bicyclus martius sanaos 
Journal of Chemical Ecology  2014;40(6):549-559.
Representatives of the highly speciose tropical butterfly genus Bicyclus (Lepidoptera: Nymphalidae) are characterized by morphological differences in the male androconia, a set of scales and hair pencils located on the surface of the wings. These androconia are assumed to be associated with the release of courtship pheromones. In the present study, we report the identification and biosynthetic pathways of several novel esters from the wings of male B. martius sanaos. We found that the volatile compounds in this male butterfly were similar to female-produced moth sex pheromones. Components associated with the male wing androconial areas were identified as ethyl, isobutyl and 2-phenylethyl hexadecanoates and (11Z)-11-hexadecenoates, among which the latter are novel natural products. By topical application of deuterium-labelled fatty acid and amino acid precursors, we found these pheromone candidates to be produced in patches located on the forewings of the males. Deuterium labels from hexadecanoic acid were incorporated into (11Z)-11-hexadecenoic acid, providing experimental evidence of a Δ11-desaturase being active in butterflies. This unusual desaturase was found previously to be involved in the biosynthesis of female-produced sex pheromones of moths. In the male butterflies, both hexadecanoic acid and (11Z)-11-hexadecenoic acid were then enzymatically esterified to form the ethyl, isobutyl and 2-phenylethyl esters, incorporating ethanol, isobutanol, and 2-phenylethanol, derived from the corresponding amino acids L-alanine, L-valine, and L-phenylalanine.
Electronic supplementary material
The online version of this article (doi:10.1007/s10886-014-0452-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4090810  PMID: 24894159
Pheromone; Biosynthesis; Δ11-desaturase; Amino acid; Butterfly; Bicyclus martius sanaos; Lepidoptera
2.  Coffee Berry Borer Joins Bark Beetles in Coffee Klatch 
PLoS ONE  2013;8(9):e74277.
Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms.
PMCID: PMC3779205  PMID: 24073204
3.  Reproductive competition in the bumble-bee Bombus terrestris: do workers advertise sterility? 
Reproductive competition in social insects is generally mediated through specific fertility pheromones. By analysing Dufour's gland secretion in queens and workers of Bombus terrestris under varying social conditions, we demonstrate here that the volatile constituents of the secretion exhibit a context-dependent composition. The secretion of egg-laying queens is composed of a series of aliphatic hydrocarbons (alkanes and alkenes), while that of sterile workers contains in addition octyl esters, dominated by octyl hexadecanoate and octyl oleate. These esters disappear in workers with developed ovaries, whether queenright (QR) or queenless (QL), rendering their secretion queen-like. This constitutes an unusual case in which the sterile caste, rather than the fertile one, possesses extra components. Individually isolated (socially deprived) workers developed ovaries successfully, but failed to oviposit, and still possessed the octyl esters. Thus, whereas social interactions are not needed in order to develop ovaries, they appear essential for oviposition and compositional changes in Dufour's gland secretion (ester disappearance). The apparent link between high ester levels and an inability to lay eggs lends credence to the hypothesis that these esters signal functional sterility. We hypothesize that by producing a sterility-specific secretion, workers signal that ‘I am out of the competition’, and therefore are not attacked, either by the queen or by the reproductive workers. This enables proper colony function and brood care, in particular sexual brood, even under the chaotic conditions of the competition phase.
PMCID: PMC2660966  PMID: 19129137
Bombus terrestris; Dufour gland; reproduction; workers' sterility; fertility signals
4.  Identification of a Sex Pheromone Produced by Sternal Glands in Females of the Caddisfly Molanna angustata Curtis 
Journal of Chemical Ecology  2008;34(2):220-228.
In the caddisfly Molanna angustata, females produce a sex pheromone in glands with openings on the fifth sternite. Gas chromatographic analyses of pheromone gland extracts with electroantennographic detection revealed four major compounds that stimulated male antennae. These compounds were identified by means of gas chromatography–mass spectrometry and enantioselective gas chromatography as heptan-2-one, (S)-heptan-2-ol, nonan-2-one, and (S)-nonan-2-ol in the approximate ratio of 1:1:4:10, respectively. Field tests showed that the mixture of the two alcohols was attractive to males whereas addition of the corresponding ketones reduced trap catches. The sex pheromone of M. angustata, a species in the family Molannidae within the suborder Integripalpia, is similar to the pheromones or pheromone-like compounds previously reported from six other trichopteran families, including members of the basal suborder Annulipalpia. This suggests that minimal evolutionary change of the pheromone chemistry has taken place within the leptoceroid branch of integripalpian Trichoptera compared to the ancestral character state.
PMCID: PMC2758392  PMID: 18213499
Molanna angustata; Molannidae; Trichoptera; Sex pheromone; Nonan-2-ol; Heptan-2-ol; Nonan-2-one; Heptan-2-one
5.  Enfleurage, lipid recycling and the origin of perfume collection in orchid bees 
Enfleurage, the extraction of elusive floral scents with the help of a lipophilic carrier (grease), is widely used in the perfume industry. Male neotropical orchid bees (Euglossini), which accumulate exogenous fragrances as pheromone analogues, use a similar technique. To collect fragrances, the bees apply large amounts of straight-chain lipids to odoriferous surfaces from their cephalic labial glands, which dissolve the volatiles, and the mixture is then transferred to voluminous hind-leg pockets. Here, we show that males do in fact operate a lipid conveyor belt to accumulate and concentrate their perfume. From the hind-leg pockets of caged male Euglossa viridissima, deuterated derivatives of carrier lipids were consecutively sequestered, shuttled back to the labial glands and reused on consecutive bouts of fragrance collection. Such lipid cycling is instrumental in creating complex perfume bouquets. Furthermore, we found that labial glands of male orchid bees are strikingly similar to those of scent-marking male bumblebees in terms of size, form and structure. This, and a prominent overlap in secretory products, led us to propose that perfume collection evolved from scent-marking in ancestral corbiculate bees.
PMCID: PMC2288683  PMID: 17848369
fragrance collection; scent-marking; labial gland; pheromone analogue; volatile sampling; bumble-bees
6.  The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides 
The waxy layer of the cuticle has been shown to play a fundamental role in recognition systems of insects. The biparental burying beetle Nicrophorus vespilloides is known to have the ability to discriminate between breeding and non-breeding conspecifics and also here cuticular substances could function as recognition cue. However, it has not yet been demonstrated that the pattern of cuticular lipids can reflect the breeding status of a beetle or of any other insect. With chemical analysis using coupled gas chromatography–mass spectrometry, we showed that the chemical signature of N. vespilloides males and females is highly complex and changes its feature with breeding status. Parental beetles were characterized by a higher amount of some unusual unsaturated hydrocarbons than beetles which are not caring for larvae. The striking correlation between cuticular profiles and breeding status suggests that cuticular hydrocarbons inform the beetles about parental state and thus enable them to discriminate between their breeding partner and a conspecific intruder. Furthermore, we found evidence that nutritional conditions also influence the cuticular profile and discuss the possibility that the diet provides the precursors for the unsaturated hydrocarbons observed in parental beetles. Our study underlines the fact that the cuticular pattern is rich of information and plays a central role in the burying beetles' communication systems.
PMCID: PMC2706201  PMID: 17609182
burying beetles; Nicrophorus; recognition of reproductive status; chemical cues; cuticular hydrocarbons; polyenes
7.  Spitting out information: Trigona bees deposit saliva to signal resource locations 
Stingless bees of the species Trigona spinipes (Fabricius 1793) use their saliva to lay scent trails communicating the location of profitable food sources. Extracts of the cephalic labial glands of the salivary system (not the mandibular glands, however) contain a large amount (approx. 74%) of octyl octanoate. This ester is also found on the scent-marked substrates at the feeding site. We demonstrate octyl octanoate to be a single compound pheromone which induces full trail following behaviour. The identification of the trail pheromone in this widely distributed bee makes it an ideal organism for studying the mechanism of trail following in a day flying insect.
PMCID: PMC2093984  PMID: 17251108
trail pheromone; communication; stingless bees; foraging; salivary glands
8.  Evolution of ‘pollinator’- attracting signals in fungi 
Biology Letters  2006;2(3):401-404.
Fungi produce a plethora of secondary metabolites yet their biological significance is often little understood. Some compounds show well-known antibiotic properties, others may serve as volatile signals for the attraction of insects that act as vectors of spores or gametes. Our investigations in an outcrossing, self-incompatible fungus show that a fungus-produced volatile compound with fungitoxic activities is also responsible for the attraction of specific insects that transfer gametes. We argue that insect attraction using this compound is likely to have evolved from its primary function of defence—as has been suggested for floral scent in the angiosperms. We, thus, propose that similar yet convergent evolutionary pathways have lead to interspecific communication signals in both fungi and plants.
PMCID: PMC1686216  PMID: 17148414
Epichloë; volatiles; scent; fly pollination
9.  An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males 
PLoS ONE  2007;2(8):e661.
Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly.
PMCID: PMC1937024  PMID: 17710124
10.  Degradation of 2,3-Diethyl-5-Methylpyrazine by a Newly Discovered Bacterium, Mycobacterium sp. Strain DM-11†  
A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25°C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on Löwenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.
PMCID: PMC1392942  PMID: 16461697
11.  Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. 
Ophrys flowers mimic virgin females of their pollinators, and thereby attract males for pollination. Stimulated by scent, the males attempt to copulate with flower labella and thereby ensure pollination. Here, we show for the first time, to our knowledge, that pollinator attraction in sexually deceptive orchids may be based on a few specific chemical compounds. Ophrys speculum flowers produce many volatiles, including trace amounts of (omega-1)-hydroxy and (omega-1)-oxo acids, especially 9-hydroxydecanoic acid. These compounds, which are novel in plants, prove to be the major components of the female sex pheromone in the scoliid wasp Campsoscolia ciliata, and stimulate male copulatory behaviour in this pollinator species. The specificity of the signal depends primarily on the structure and enantiomeric composition of the oxygenated acids, which is the same in wasps and in the orchids. The overall composition of the blend differs significantly between the orchid and its pollinator and is of secondary importance. 9-Hydroxydecanoic acid is a rarely occurring compound that until now has been identified only in honeybees. Contrary to the standard hypothesis that Ophrys flowers produce only 'second-class attractivity compounds' and are neglected once the pollinator females are present, we show that flowers are more attractive to the males than are their own females.
PMCID: PMC1691269  PMID: 12641907
12.  Biotransformation of Biphenyl by Paecilomyces lilacinus and Characterization of Ring Cleavage Products 
We examined the pathway by which the fungicide biphenyl is metabolized in the imperfect fungus Paecilomyces lilacinus. The initial oxidation yielded the three monohydroxylated biphenyls. Further hydroxylation occurred on the first and the second aromatic ring systems, resulting in the formation of five di- and trihydroxylated metabolites. The fungus could cleave the aromatic structures, resulting in the transformation of biphenyl via ortho-substituted dihydroxybiphenyl to six-ring fission products. All compounds were characterized by gas chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. These compounds include 2-hydroxy-4-phenylmuconic acid and 2-hydroxy-4-(4′-hydroxyphenyl)-muconic acid, which were produced from 3,4-dihydroxybiphenyl and further transformed to the corresponding lactones 4-phenyl-2-pyrone-6-carboxylic acid and 4-(4′-hydroxyphenyl)-2-pyrone-6-carboxylic acid, which accumulated in large amounts. Two additional ring cleavage products were identified as (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)-acetic acid and [5-oxo-3-(4′-hydroxyphenyl)-2,5-dihydrofuran-2-yl]-acetic acid. We found that P. lilacinus has a high transformation capacity for biphenyl, which could explain this organism's tolerance to this fungicide.
PMCID: PMC92768  PMID: 11282604
13.  Cometabolic Degradation of Dibenzofuran by Biphenyl-Cultivated Ralstonia sp. Strain SBUG 290† 
Applied and Environmental Microbiology  2000;66(10):4528-4531.
Cells of the gram-negative bacterium Ralstonia sp. strain SBUG 290 grown in the presence of biphenyl are able to cooxidize dibenzofuran which has been 1,2-hydroxylated. Meta cleavage of the 1,2-dihydroxydibenzofuran between carbon atoms 1 and 9b produced 2-hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid, which was degraded completely via salicylic acid. The presence of these intermediates indicates a degradation mechanism for dibenzofuran via lateral dioxygenation by Ralstonia sp. strain SBUG 290.
PMCID: PMC92336  PMID: 11010910
14.  Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis 
Journal of Bacteriology  1999;181(4):1189-1195.
Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1.
PMCID: PMC93496  PMID: 9973345
15.  Isolation and Characterization of a Dibenzofuran-Degrading Yeast: Identification of Oxidation and Ring Cleavage Products 
We characterized the ability of a yeast to cleave the aromatic structure of the dioxin-like compound dibenzofuran. The yeast strain was isolated from a dioxin-contaminated soil sample and identified as Trichosporon mucoides. During incubation of glucose-pregrown cells with dibenzofuran, six major metabolites were detected by high-performance liquid chromatography. The formation of four different monohydroxylated dibenzofurans was proven by comparison of analytical data (gas chromatography-mass spectrometry) with that for authentic standards. Further oxidation produced 2,3-dihydroxydibenzofuran and its ring cleavage product 2-(1-carboxy methylidene)-2,3-dihydrobenzo[b]furanylidene glycolic acid, which were characterized by mass spectrometry and 1H nuclear magnetic resonance spectroscopy. These two metabolites are derived from 2-hydroxydibenzofuran and 3-hydroxydibenzofuran, as shown by incubation experiments using these monohydroxylated dibenzofurans as substrates.
PMCID: PMC106301  PMID: 9603837
16.  Degradation of 1,2,4-Trichloro- and 1,2,4,5-Tetrachlorobenzene by Pseudomonas Strains 
Two Pseudomonas sp. strains, capable of growth on chlorinated benzenes as the sole source of carbon and energy, were isolated by selective enrichment from soil samples of an industrial waste deposit. Strain PS12 grew on monochlorobenzene, all three isomeric dichlorobenzenes, and 1,2,4-trichlorobenzene (1,2,4-TCB). Strain PS14 additionally used 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB). During growth on these compounds both strains released stoichiometric amounts of chloride ions. The first steps of the catabolism of 1,2,4-TCB and 1,2,4,5-TeCB proceeded via dioxygenation of the aromatic nuclei and furnished 3,4,6-trichlorocatechol. The intermediary cis-3,4,6-trichloro-1,2-dihydroxycyclohexa-3,5-diene (TCB dihydrodiol) formed from 1,2,4-TCB was rearomatized by an NAD+-dependent dihydrodiol dehydrogenase activity, while in the case of 1,2,4,5-TeCB oxidation the catechol was obviously produced by spontaneous elimination of hydrogen chloride from the initially formed 1,3,4,6-tetrachloro-1,2-dihydroxycyclohexa-3,5-diene. Subsequent ortho cleavage was catalyzed by a type II catechol 1,2-dioxygenase producing the corresponding 2,3,5-trichloromuconate which was channeled into the tricarboxylic acid pathway via an ordinary degradation sequence, which in the present case included 2-chloro-3-oxoadipate. From the structure-related compound 2,4,5-trichloronitrobenzene the nitro group was released as nitrite, leaving the above metabolite as 3,4,6-trichlorocatechol. Enzyme activities for the oxidation of chlorobenzenes and halogenated metabolites were induced by both strains during growth on these haloaromatics and, to a considerable extent, during growth of strain PS12 on acetate.
PMCID: PMC182966  PMID: 16348484
17.  Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69 
Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid.
PMCID: PMC184359  PMID: 16348160
18.  Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27 
A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chromone), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydiben-zofurans were identified in the culture medium. 2,2′,3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2′,3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway.
PMCID: PMC184358  PMID: 16348159

Results 1-18 (18)