PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Detecting Multiple Causal Rare Variants in Exome Sequence Data 
Genetic Epidemiology  2011;35(Suppl 1):S18-S21.
Recent advances in sequencing technology have presented both opportunities and challenges, with limited statistical power to detect a single causal rare variant with practical sample sizes. To overcome this, the contributors to Group 1 of Genetic Analysis Workshop 17 sought to develop methods to detect the combined signal of multiple causal rare variants in a biologically meaningful way. The contributors used genes, genome location proximity, or genetic pathways as the basic unit in combining the information from multiple variants. Weaknesses of the exome sequence data and the relative strengths and weaknesses of the five approaches are discussed.
doi:10.1002/gepi.20644
PMCID: PMC3271433  PMID: 22128053
Bayesian; pathways; simulated
2.  Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test 
PLoS ONE  2008;3(10):e3475.
Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category.
doi:10.1371/journal.pone.0003475
PMCID: PMC2566806  PMID: 18941524
3.  A gene-model-free method for linkage analysis of a disease-related-trait based on analysis of proband/sibling pairs 
BMC Genetics  2005;6(Suppl 1):S47.
In this paper we investigate the power of finding linkage to a disease locus through analysis of the disease-related traits. We propose two family-based gene-model-free linkage statistics. Both involve considering the distribution of the number of alleles identical by descent with the proband and comparing siblings with the disease-related trait to those without the disease-related-trait. The objective is to find linkages to disease-related traits that are pleiotropic for both the disease and the disease-related-traits. The power of these statistics is investigated for Kofendrerd Personality Disorder-related traits a (Joining/founding cults) and trait b (Fear/discomfort with strangers) of the simulated data. The answers were known prior to the execution of the reported analyses. We find that both tests have very high power when applied to the samples created by combining the data of the three cities for which we have nuclear family data.
doi:10.1186/1471-2156-6-S1-S47
PMCID: PMC1866737  PMID: 16451658
4.  Using mixture models to characterize disease-related traits 
BMC Genetics  2005;6(Suppl 1):S99.
We consider 12 event-related potentials and one electroencephalogram measure as disease-related traits to compare alcohol-dependent individuals (cases) to unaffected individuals (controls). We use two approaches: 1) two-way analysis of variance (with sex and alcohol dependency as the factors), and 2) likelihood ratio tests comparing sex adjusted values of cases to controls assuming that within each group the trait has a 2 (or 3) component normal mixture distribution. In the second approach, we test the null hypothesis that the parameters of the mixtures are equal for the cases and controls. Based on the two-way analysis of variance, we find 1) males have significantly (p < 0.05) lower mean response values than females for 7 of these traits. 2) Alcohol-dependent cases have significantly lower mean response than controls for 3 traits. The mixture analysis of sex-adjusted values of 1 of these traits, the event-related potential obtained at the parietal midline channel (ttth4), found the appearance of a 3-component normal mixture in cases and controls. The mixtures differed in that the cases had significantly lower mean values than controls and significantly different mixing proportions in 2 of the 3 components. Implications of this study are: 1) Sex needs to be taken into account when studying risk factors for alcohol dependency to prevent finding a spurious association between alcohol dependency and the risk factor. 2) Mixture analysis indicates that for the event-related potential "ttth4", the difference observed reflects strong evidence of heterogeneity of response in both the cases and controls.
doi:10.1186/1471-2156-6-S1-S99
PMCID: PMC1866680  PMID: 16451715
5.  Locating disease genes using Bayesian variable selection with the Haseman-Elston method 
BMC Genetics  2003;4(Suppl 1):S69.
Background
We applied stochastic search variable selection (SSVS), a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13. We used SSVS with the revisited Haseman-Elston method to find the markers linked to the loci determining change in cholesterol over time. To study gene-gene interaction (epistasis) and gene-environment interaction, we adopted prior structures, which incorporate the relationship among the predictors. This allows SSVS to search in the model space more efficiently and avoid the less likely models.
Results
In applying SSVS, instead of looking at the posterior distribution of each of the candidate models, which is sensitive to the setting of the prior, we ranked the candidate variables (markers) according to their marginal posterior probability, which was shown to be more robust to the prior. Compared with traditional methods that consider one marker at a time, our method considers all markers simultaneously and obtains more favorable results.
Conclusions
We showed that SSVS is a powerful method for identifying linked markers using the Haseman-Elston method, even for weak effects. SSVS is very effective because it does a smart search over the entire model space.
doi:10.1186/1471-2156-4-S1-S69
PMCID: PMC1866507  PMID: 14975137

Results 1-5 (5)