Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("morona, gata")
1.  Kernel-based whole-genome prediction of complex traits: a review 
Frontiers in Genetics  2014;5:363.
Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.
PMCID: PMC4199321  PMID: 25360145
whole-genome prediction; kernel methods; semi-parametric regression; spatial distance; SNP
2.  Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits 
Prediction of complex trait phenotypes in the presence of unknown gene action is an ongoing challenge in animals, plants, and humans. Development of flexible predictive models that perform well irrespective of genetic and environmental architectures is desirable. Methods that can address non-additive variation in a non-explicit manner are gaining attention for this purpose and, in particular, semi-parametric kernel-based methods have been applied to diverse datasets, mostly providing encouraging results. On the other hand, the gains obtained from these methods have been smaller when smoothed values such as estimated breeding value (EBV) have been used as response variables. However, less emphasis has been placed on the choice of phenotypes to be used in kernel-based whole-genome prediction. This study aimed to evaluate differences between semi-parametric and parametric approaches using two types of response variables and molecular markers as inputs. Pre-corrected phenotypes (PCP) and EBV obtained for dairy cow health traits were used for this comparison. We observed that non-additive genetic variances were major contributors to total genetic variances in PCP, whereas additivity was the largest contributor to variability of EBV, as expected. Within the kernels evaluated, non-parametric methods yielded slightly better predictive performance across traits relative to their additive counterparts regardless of the type of response variable used. This reinforces the view that non-parametric kernels aiming to capture non-linear relationships between a panel of SNPs and phenotypes are appealing for complex trait prediction. However, like past studies, the gain in predictive correlation was not large for either PCP or EBV. We conclude that capturing non-additive genetic variation, especially epistatic variation, in a cross-validation framework remains a significant challenge even when it is important, as seems to be the case for health traits in dairy cows.
PMCID: PMC3970026  PMID: 24715901
dairy cow; genetic variance; kernel method; non-additive effect; whole-genome prediction
3.  Genome-enabled prediction of quantitative traits in chickens using genomic annotation 
BMC Genomics  2014;15:109.
Genome-wide association studies have been deemed successful for identifying statistically associated genetic variants of large effects on complex traits. Past studies have found enrichment of trait-associated SNPs in functionally annotated regions, while depletion was reported for intergenic regions (IGR). However, no systematic examination of connections between genomic regions and predictive ability of complex phenotypes has been carried out.
In this study, we partitioned SNPs based on their annotation to characterize genomic regions that deliver low and high predictive power for three broiler traits in chickens using a whole-genome approach. Additive genomic relationship kernels were constructed for each of the genic regions considered, and a kernel-based Bayesian ridge regression was employed as prediction machine. We found that the predictive performance for ultrasound area of breast meat from using genic regions marked by SNPs was consistently better than that from SNPs in IGR, while IGR tagged by SNPs were better than the genic regions for body weight and hen house egg production. We also noted that predictive ability delivered by the whole battery of markers was close to the best prediction achieved by one of the genomic regions.
Whole-genome regression methods use all available quality filtered SNPs into a model, contrary to accommodating only validated SNPs from exonic or coding regions. Our results suggest that, while differences among genomic regions in terms of predictive ability were observed, the whole-genome approach remains as a promising tool if interest is on prediction of complex traits.
PMCID: PMC3922252  PMID: 24502227
Whole-genome prediction; Annotation; SNP; Chicken
4.  Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data 
Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel.
We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible.
It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance.
PMCID: PMC3706293  PMID: 23763755
5.  Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model 
BMC Proceedings  2011;5(Suppl 9):S93.
Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from 3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes, PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to detect genes containing rare and common variants associated with a binary phenotype.
PMCID: PMC3287935  PMID: 22373180

Results 1-5 (5)