Search tips
Search criteria

Results 1-25 (38)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia 
Autosomal recessive hypercholesterolemia (ARH) is a rare inherited disorder characterized by extremely high total and low-density lipoprotein cholesterol levels that has been previously linked to mutations in LDLRAP1. We identified a family with ARH not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular etiology of ARH in this family.
Approach and Results
We used exome sequencing to assess all protein coding regions of the genome in three family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Since homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease (CESD), we performed directed follow-up phenotyping by non-invasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of CESD. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27,000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance.
By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent CESD in the affected individuals from this kindred and addressed an outstanding question regarding risk of cardiovascular disease in LIPA E8SJM heterozygous carriers.
PMCID: PMC4002172  PMID: 24072694
hypercholesterolemia; genetics; myocardial infarction
3.  Localisation of AMPK γ subunits in cardiac and skeletal muscles 
The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca2+ channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca2+ influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.
PMCID: PMC3853370  PMID: 24037260
AMPK; γ Subunits; Sub-cellular localisation; Cardiomyopathy
4.  Personalized medicine: hope or hype? 
European Heart Journal  2012;33(13):1564-1570.
Medicine has always been personalized. For years, physicians have incorporated environmental, behavioural, and genetic factors that affect disease and drug response into patient management decisions. However, until recently, the ‘genetic’ data took the form of family history and self-reported race/ethnicity. As genome sequencing declines in cost, the availability of specific genomic information will no longer be limiting. Rather, our ability to parse these data and our decision whether to use it will become primary. As our understanding of genetic association with drug responses and diseases continues to improve, clinically useful genetic tests may emerge to improve upon our previous methods of assessing genetic risks. Indeed, genetic tests for monogenic disorders have already proven useful. Such changes may usher in a new era of personalized medicine. In this review, we will discuss the utility and limitations of personal genomic data in three domains: pharmacogenomics, assessment of genetic predispositions for common diseases, and identification of rare disease-causing genetic variants.
PMCID: PMC3388016  PMID: 22659199
Pharmacogenomics; Common disease risk assessment; Rare genetic variant discovery; Personalized medicine; Genomic medicine
5.  Association Between the Chromosome 9p21 Locus and Angiographic Coronary Artery Disease Burden 
This study sought to ascertain the relationship of 9p21 locus with: 1) angiographic coronary artery disease (CAD) burden; and 2) myocardial infarction (MI) in individuals with underlying CAD.
Chromosome 9p21 variants have been robustly associated with coronary heart disease, but questions remain on the mechanism of risk, specifically whether the locus contributes to coronary atheroma burden or plaque instability.
We established a collaboration of 21 studies consisting of 33,673 subjects with information on both CAD (clinical or angiographic) and MI status along with 9p21 genotype. Tabular data are provided for each cohort on the presence and burden of angiographic CAD, MI cases with underlying CAD, and the diabetic status of all subjects.
We first confirmed an association between 9p21 and CAD with angiographically defined cases and control subjects (pooled odds ratio [OR]: 1.31, 95% confidence interval [CI]: 1.20 to 1.43). Among subjects with angiographic CAD (n = 20,987), random-effects model identified an association with multivessel CAD, compared with those with single-vessel disease (OR: 1.10, 95% CI: 1.04 to 1.17)/copy of risk allele). Genotypic models showed an OR of 1.15, 95% CI: 1.04 to 1.26 for heterozygous carrier and OR: 1.23, 95% CI: 1.08 to 1.39 for homozygous carrier. Finally, there was no significant association between 9p21 and prevalent MI when both cases (n = 17,791) and control subjects (n = 15,882) had underlying CAD (OR: 0.99, 95% CI: 0.95 to 1.03)/risk allele.
The 9p21 locus shows convincing association with greater burden of CAD but not with MI in the presence of underlying CAD. This adds further weight to the hypothesis that 9p21 locus primarily mediates an atherosclerotic phenotype.
PMCID: PMC3653306  PMID: 23352782
9p21; angiography; coronary artery disease; meta-analysis; myocardial infarction; single nucleotide polymorphism
6.  Hazardous alcohol consumption is associated with increased levels of B-type natriuretic peptide: evidence from two population-based studies 
European Journal of Epidemiology  2013;28(5):393-404.
Russia has very high mortality from cardiovascular disease (CVD), with evidence that heavy drinking may play a role. To throw further light on this association we have studied the association of alcohol with predictors of CVD risk including B-type natriuretic peptide (BNP). Levels of BNP increase primarily in response to abnormal cardiac chamber wall stretch which can occur both as a result of atherosclerosis as well as due to other types of damage to the myocardium. No previous population-based studies have investigated the association with alcohol. We analysed cross-sectional data on drinking behaviour in 993 men aged 25–60 years from the Izhevsk Family Study 2 (IFS2), conducted in the Russian city of Izhevsk in 2008–2009. Relative to non-drinkers, men who drank hazardously had an odds ratio (OR) of being in the top 20 % of the BNP distribution of 4.66 (95 % CI 2.13, 10.19) adjusted for age, obesity, waist–hip ratio, and smoking. Further adjustment for class of hypertension resulted in only slight attenuation of the effect, suggesting that this effect was not secondary to the influence of alcohol on blood pressure. In contrast hazardous drinking was associated with markedly raised ApoA1 and HDL cholesterol levels, but had little impact on levels of ApoB and LDL cholesterol. Similar but less pronounced associations were found in the Belfast (UK) component of the PRIME study conducted in 1991. These findings suggest that the association of heavy drinking with increased risk of cardiovascular disease may be partly due to alcohol-induced non-atherosclerotic damage to the myocardium.
PMCID: PMC3672507  PMID: 23645505
Alcohol; B-type natriuretic peptide; Russia; Cardiovascular disease
7.  Genetic Variants from Lipid-Related Pathways and Risk for Incident Myocardial Infarction 
PLoS ONE  2013;8(3):e60454.
Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI).
We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples.
Setting and Subjects
Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142).
In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048).
rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI.
PMCID: PMC3612051  PMID: 23555974
8.  Blunted Myocardial Oxygenation Response During Vasodilator Stress in Patients With Hypertrophic Cardiomyopathy 
This study sought to assess myocardial perfusion and tissue oxygenation during vasodilator stress in patients with overt hypertrophic cardiomyopathy (HCM), as well as in HCM mutation carriers without left ventricular (LV) hypertrophy, and to compare findings to those in athletes with comparable hypertrophy and normal controls.
Myocardial perfusion under vasodilator stress is impaired in patients with HCM. Whether this is associated with impaired myocardial oxygenation and tissue ischemia is unknown. Furthermore, it is not known whether perfusion and oxygenation are impaired in HCM mutation carriers without left ventricular hypertrophy (LVH).
A total of 27 patients with overt HCM, 10 HCM mutation carriers without LVH, 11 athletes, and 20 healthy controls underwent cardiovascular magnetic resonance (CMR) scanning at 3-T. Myocardial function, perfusion (perfusion reserve index [MPRI]), and oxygenation (blood-oxygen level dependent signal intensity [SI] change) under adenosine stress were assessed.
MPRI was significantly reduced in HCM (1.3 ± 0.1) compared to controls (1.8 ± 0.1, p < 0.001) and athletes (2.0 ± 0.1, p < 0.001), but remained normal in HCM mutation carriers without LVH (1.7 ± 0.1; p = 0.61 vs. controls, p = 0.02 vs. overt HCM). Oxygenation response was attenuated in overt HCM (SI change 6.9 ± 1.4%) compared to controls (18.9 ± 1.4%, p < 0.0001) and athletes (18.7 ± 2.0%, p < 0.001). Interestingly, HCM mutation carriers without LVH also showed an impaired oxygenation response to adenosine (10.4 ± 2.0%; p = 0.001 vs. controls, p = 0.16 vs. overt HCM, p = 0.003 vs. athletes).
In overt HCM, both perfusion and oxygenation are impaired during vasodilator stress. However, in HCM mutation carriers without LVH, only oxygenation is impaired. In athletes, stress perfusion and oxygenation are normal. CMR assessment of myocardial oxygenation has the potential to become a novel risk factor in HCM.
PMCID: PMC3595528  PMID: 23498131
athletes; cardiac magnetic resonance imaging; hypertrophy; ischemia; perfusion; BOLD, blood-oxygen level-dependent; CMR, cardiovascular magnetic resonance; ECG, electrocardiogram; HCM, hypertrophic cardiomyopathy; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; MPRI, myocardial perfusion reserve index; PET, positron emission tomography; SI, signal intensity
9.  In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy 
Alterations in cardiac metabolism accompany many diseases of the heart. The advent of cardiac hyperpolarized magnetic resonance spectroscopy (MRS), via dynamic nuclear polarization (DNP), has enabled a greater understanding of the in vivo metabolic changes that occur as a consequence of myocardial infarction, hypertrophy and diabetes. However, all cardiac studies performed to date have focused on rats and larger animals, whereas more information could be gained through the study of transgenic mouse models of heart disease. Translation from the rat to the mouse is challenging, due in part to the reduced heart size (1/10th) and the increased heart rate (50%) in the mouse compared to the rat.
Methods and Results
In this study, we have investigated the in vivo metabolism of [1-13C]pyruvate in the mouse heart. To demonstrate the sensitivity of the method to detect alterations in pyruvate dehydrogenase (PDH) flux, two well characterised methods of PDH modulation were performed; overnight fasting and infusion of sodium dichloroacetate (DCA). Fasting resulted in an 85% reduction in PDH flux, whilst DCA infusion increased PDH flux by 123%. A comparison of three commonly used control mouse strains was performed revealing significant metabolic differences between strains.
We have successfully demonstrated a hyperpolarized DNP protocol to investigate in vivo alterations within the diseased mouse heart. This technique offers a significant advantage over existing in vitro techniques as it reduces animal numbers and decreases biological variability. Thus [1-13C]pyruvate can be used to provide an in vivo cardiac metabolic profile of transgenic mice.
PMCID: PMC3599631  PMID: 23414451
11.  Functional Significance of SRJ Domain Mutations in CITED2 
PLoS ONE  2012;7(10):e46256.
CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ) that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD) cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T) in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be insufficient.
PMCID: PMC3474824  PMID: 23082118
12.  Embryonic expression of AMPK γ subunits and the identification of a novel γ2 transcript variant in adult heart 
AMP-activated protein kinase (AMPK), the key sensor and regulator of cellular energy status, is a heterotrimeric enzyme with multiple isoforms for each subunit (α1/α 2; β1/β2; γ1/γ2/γ3). Mutations in PRKAG2, which encodes the γ2 regulatory subunit, cause a cardiomyopathy characterized by hypertrophy and conduction abnormalities. The two reported PRKAG2 transcript variants, γ2-short and γ2-long (encoding 328 and 569 amino acids respectively), are both widely expressed in adult tissues. We show that both γ2 variants are also expressed during cardiogenesis in mouse embryos; expression of the γ3 isoform was also detected unexpectedly at this stage. As neither γ2 transcript is cardiac specific nor differentially expressed during embryogenesis, it is paradoxical that the disease is largely restricted to the heart. However, a recently annotated γ2 transcript, termed γ2-3B as transcription starts at an alternative exon 3b, has been identified; it is spliced in-frame to exon 4 thus generating a protein of 443 residues in mouse with the first 32 residues being unique. It is increasingly expressed in the developing mouse heart and quantitative PCR analysis established that γ2-3B is the major PRKAG2 transcript (~ 60%) in human heart. Antibody against the novel N-terminal sequence showed that γ2-3B is predominantly expressed in the heart where it is the most abundant γ2 protein. The abundance of γ2-3B and its tissue specificity indicate that γ2-3B may have non-redundant role in the heart and hence mediate the predominantly cardiac phenotype caused by PRKAG2 mutations.
► We have identified a novel PRKAG2 transcript of intermediate length (γ2-3B). ► γ2-3B is the most abundant cardiac AMPK γ2 at both mRNA and protein levels. ► Functional changes in AMPK containing γ2-3B may mediate PRKAG2 cardiomyopathy. ► γ2 and γ3 are the early embryonic AMPK γ subuits.
PMCID: PMC3477313  PMID: 22683324
AMP-activated protein kinase; PRKAG2 transcripts; Cardiomyopathy
13.  Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction 
Cardiovascular Research  2012;96(3):466-475.
Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We therefore used mice overexpressing creatine transporter in the heart (CrT-OE) to test for the first time whether elevated creatine is beneficial in clinically relevant disease models of heart failure and ischaemia/reperfusion (I/R) injury.
Methods and results
CrT-OE mice were selected for left ventricular (LV) creatine 20–100% above wild-type values and subjected to acute and chronic coronary artery ligation. Increasing myocardial creatine up to 100% was not detrimental even in ageing CrT-OE. In chronic heart failure, creatine elevation was neither beneficial nor detrimental, with no effect on survival, LV remodelling or dysfunction. However, CrT-OE hearts were protected against I/R injury in vivo in a dose-dependent manner (average 27% less myocardial necrosis) and exhibited greatly improved functional recovery following ex vivo I/R (59% of baseline vs. 29%). Mechanisms contributing to ischaemic protection in CrT-OE hearts include elevated PCr and glycogen levels and improved energy reserve. Furthermore, creatine loading in HL-1 cells did not alter antioxidant defences, but delayed mitochondrial permeability transition pore opening in response to oxidative stress, suggesting an additional mechanism to prevent reperfusion injury.
Elevation of myocardial creatine by 20–100% reduced myocardial stunning and I/R injury via pleiotropic mechanisms, suggesting CrT activation as a novel, potentially translatable target for cardiac protection from ischaemia.
PMCID: PMC3500046  PMID: 22915766
Cardiac energetics; Metabolism; Creatine kinase; Ischaemia; Reperfusion injury; Myocardial stunning
14.  Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway 
Cell Metabolism  2012;15(3):361-371.
The citric acid cycle (CAC) metabolite fumarate has been proposed to be cardioprotective; however, its mechanisms of action remain to be determined. To augment cardiac fumarate levels and to assess fumarate's cardioprotective properties, we generated fumarate hydratase (Fh1) cardiac knockout (KO) mice. These fumarate-replete hearts were robustly protected from ischemia-reperfusion injury (I/R). To compensate for the loss of Fh1 activity, KO hearts maintain ATP levels in part by channeling amino acids into the CAC. In addition, by stabilizing the transcriptional regulator Nrf2, Fh1 KO hearts upregulate protective antioxidant response element genes. Supporting the importance of the latter mechanism, clinically relevant doses of dimethylfumarate upregulated Nrf2 and its target genes, hence protecting control hearts, but failed to similarly protect Nrf2-KO hearts in an in vivo model of myocardial infarction. We propose that clinically established fumarate derivatives activate the Nrf2 pathway and are readily testable cytoprotective agents.
► Cardiac fumarase deletion (cFH1-KO) results in mice with elevated cardiac fumarate ► cFH1-KO is compensated for by amino acid influx into the citric acid cycle ► Nrf2 and its target genes are activated in the hearts of cFH1-KO mice ► Fumarate-related Nrf2 activation is cytoprotective and may be of therapeutic use
PMCID: PMC3314920  PMID: 22405071
15.  Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias 
PLoS Medicine  2012;9(2):e1001177.
Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease.
Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreciably increases homocysteine levels, so “Mendelian randomization” studies using this variant as an instrumental variable could help test causality.
Methods and Findings
Nineteen unpublished datasets were obtained (total 48,175 CHD cases and 67,961 controls) in which multiple genetic variants had been measured, including MTHFR C677T. These datasets did not include measurements of blood homocysteine, but homocysteine levels would be expected to be about 20% higher with TT than with CC genotype in the populations studied. In meta-analyses of these unpublished datasets, the case-control CHD odds ratio (OR) and 95% CI comparing TT versus CC homozygotes was 1.02 (0.98–1.07; p = 0.28) overall, and 1.01 (0.95–1.07) in unsupplemented low-folate populations. By contrast, in a slightly updated meta-analysis of the 86 published studies (28,617 CHD cases and 41,857 controls), the OR was 1.15 (1.09–1.21), significantly discrepant (p = 0.001) with the OR in the unpublished datasets. Within the meta-analysis of published studies, the OR was 1.12 (1.04–1.21) in the 14 larger studies (those with variance of log OR<0.05; total 13,119 cases) and 1.18 (1.09–1.28) in the 72 smaller ones (total 15,498 cases).
The CI for the overall result from large unpublished datasets shows lifelong moderate homocysteine elevation has little or no effect on CHD. The discrepant overall result from previously published studies reflects publication bias or methodological problems.
Please see later in the article for the Editors' Summary
Editors' Summary
Coronary heart disease (CHD) is the leading cause of death among adults in developed countries. With age, fatty deposits (atherosclerotic plaques) coat the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant restriction of the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and sometimes fatal heart attacks. Many established risk factors for CHD, including smoking, physical inactivity, being overweight, and eating a fat-rich diet, can be modified by lifestyle changes. Another possible modifiable risk factor for CHD is a high blood level of the amino acid homocysteine. Methylene tetrahydofolate reductase, which is encoded by the MTHFR gene, uses folate to break down and remove homocysteine so fortification of cereals with folate can reduce population homocysteine blood levels. Pooled results from prospective observational studies that have looked for an association between homocysteine levels and later development of CHD suggest that the reduction in homocysteine levels that can be achieved by folate supplementation is associated with an 11% lower CHD risk.
Why Was This Study Done?
Prospective observational studies cannot prove that high homocysteine levels cause CHD because of confounding, the potential presence of other unknown shared characteristics that really cause CHD. However, an approach called “Mendelian randomization” can test whether high blood homocysteine causes CHD. A common genetic variant of the MTHFR gene—the C677T polymorphism—reduces MTHFR efficiency so TT homozygotes (individuals in whom both copies of the MTHFR gene have the nucleotide thymine at position 677; the human genome contains two copies of most genes) have 25% higher blood homocysteine levels than CC homozygotes. In meta-analyses (statistical pooling of the results of several studies) of published Mendelian randomized studies, TT homozygotes have a higher CHD risk than CC homozygotes. Because gene variants are inherited randomly, they are not subject to confounding, so this result suggests that high blood homocysteine causes CHD. But what if only Mendelian randomization studies that found an association have been published? Such publication bias would affect this aggregate result. Here, the researchers investigate the association of the MTHFR C677T polymorphism with CHD in unpublished datasets that have analyzed this polymorphism incidentally during other genetic studies.
What Did the Researchers Do and Find?
The researchers obtained 19 unpublished datasets that contained data on the MTHFR C677T polymorphism in thousands of people with and without CHD. Meta-analysis of these datasets indicates that the excess CHD risk in TT homozygotes compared to CC homozygotes was 2% (much lower than predicted from the prospective observational studies), a nonsignificant difference (that is, it could have occurred by chance). When the probable folate status of the study populations (based on when national folic acid fortification legislation came into effect) was taken into account, there was still no evidence that TT homozygotes had an excess CHD risk. By contrast, in an updated meta-analysis of 86 published studies of the association of the polymorphism with CHD, the excess CHD risk in TT homozygotes compared to CC homozygotes was 15%. Finally, in a meta-analysis of randomized trials on the use of vitamin B supplements for homocysteine reduction, folate supplementation had no significant effect on the 5-year incidence of CHD.
What Do These Findings Mean?
These analyses of unpublished datasets are consistent with lifelong moderate elevation of homocysteine levels having no significant effect on CHD risk. In other words, these findings indicate that circulating homocysteine levels within the normal range are not causally related to CHD risk. The meta-analysis of the randomized trials of folate supplementation also supports this conclusion. So why is there a discrepancy between these findings and those of meta-analyses of published Mendelian randomization studies? The discrepancy is too large to be dismissed as a chance finding, suggest the researchers, but could be the result of publication bias—some studies might have been prioritized for publication because of the positive nature of their results whereas the unpublished datasets used in this study would not have been affected by any failure to publish null results. Overall, these findings reveal a serious example of publication bias and argue against the use of folate supplements as a means of reducing CHD risk.
Additional Information
Please access these Web sites via the online version of this summary at
The American Heart Association provides information about CHD and tips on keeping the heart healthy; it also provides information on homocysteine, folic acid, and CHD, general information on supplements and heart health, and personal stories about CHD
The UK National Health Service Choices website provides information about CHD, including personal stories about CHD
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute also provides information on CHD (in English and Spanish)
MedlinePlus provides links to many other sources of information on CHD (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC3283559  PMID: 22363213
20.  Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness 
PLoS ONE  2011;6(8):e23248.
The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness.
Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including “classical” cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed.
There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype.
Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility.
PMCID: PMC3155541  PMID: 21858044
21.  Mice Over-Expressing the Myocardial Creatine Transporter Develop Progressive Heart Failure and Show Decreased Glycolytic Capacity 
The metabolic phenotype of the failing heart includes a decrease in phosphocreatine and total creatine concentration [Cr], potentially contributing to contractile dysfunction. Surprisingly, in 32 week old mice over-expressing the myocardial creatine transporter (CrT-OE), we previously demonstrated that elevated [Cr] correlates with left ventricular (LV) hypertrophy and failure. The aim of this study was to determine the temporal relationship between elevated [Cr] and the onset of cardiac dysfunction and to screen for potential molecular mechanisms. CrT-OE mice were compared with wild-type (WT) littermate controls longitudinally using cine-MRI to measure cardiac function and single-voxel 1H-MRS to measure [Cr] in vivo at 6, 16, 32, and 52 weeks of age. CrT-OE mice had elevated [Cr] at 6 weeks (mean 1.9-fold), which remained constant throughout life. Despite this increased [Cr], LV dysfunction was not apparent until 16 weeks and became more pronounced with age. Additionally, LV tissue from 12 to 14 week old CrT-OE mice was compared to WT using 2D difference in-gel electrophoresis (DIGE). These analyses detected a majority of the heart’s metabolic enzymes and identified 7 proteins that were differentially expressed between groups. The most pronounced protein changes were related to energy metabolism: α- and β-enolase were selectively decreased (p<0.05), while the remaining enzymes of glycolysis were unchanged. Consistent with a decrease in enolase content, its activity was significantly lower in CrT-OE hearts (in WT, 0.59±0.02 μmol ATP produced/μg protein/min; CrT-OE, 0.31±0.06; p<0.01). Additionally, anaerobic lactate production was decreased in CrT-OE mice (in WT, 102±3 μmol/g wet myocardium; CrT-OE, 78±13; p=0.02), consistent with decreased glycolytic capacity. Finally, we found that enolase may be regulated by increased expression of the β-enolase repressor transcription factor, which was significantly increased in CrT-OE hearts. This study demonstrates that chronically increased myocardial [Cr] in the CrT-OE model leads to the development of progressive hypertrophy and heart failure, which may be mediated by a compromise in glycolytic capacity at the level of enolase.
PMCID: PMC2837781  PMID: 19913546
Myocardial energy metabolism; heart failure; hypertrophy; creatine content; magnetic resonance imaging; magnetic resonance spectroscopy; proteomics
23.  Familial Dilated Cardiomyopathy caused by an Alpha-Tropomyosin Mutation: The Distinctive Natural History of Sarcomeric DCM 
To further define the role of sarcomere mutations in DCM and associated clinical phenotypes.
Mutations in several contractile proteins contribute to DCM, but definitive evidence for the roles of most sarcomere genes remains limited by the lack of robust genetic support.
Direct sequencing of 6 sarcomere genes was performed on 334 probands with DCM. A novel D230N missense mutation in the gene encoding α-tropomyosin (TPM1) was identified. Functional assessment was performed using an in vitro reconstituted sarcomere complex to evaluate ATPase regulation and Ca2+ affinity as correlates of contractility.
TPM1 D230N segregated with DCM in two large unrelated families. This mutation altered an evolutionarily conserved residue and was absent in >1000 control chromosomes. In vitro studies demonstrated major inhibitory effects on sarcomere function with reduced Ca2+-sensitivity, maximum activation, and Ca2+ affinity compared to wildtype TPM1. Clinical manifestations ranged from decompensated heart failure or sudden death in those presenting early in life, to asymptomatic left ventricular dysfunction in those diagnosed during adulthood. Notably, several affected infants had remarkable improvement.
Genetic segregation in 2 unrelated families and functional analyses conclusively establish a pathogenic role for TPM1 mutations in DCM. In vitro results demonstrate contrasting effects of DCM and HCM mutations in TPM1, suggesting that specific functional consequences shape cardiac remodeling. Along with prior reports, our data support a distinctive, age-dependent phenotype with sarcomere-associated DCM where presentation early in life is associated with severe, sometimes lethal, disease. These observations have implications for the management of familial DCM.
PMCID: PMC3000630  PMID: 20117437
cardiomyopathy; heart failure; genetics
24.  Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy 
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, increased ventricular stiffness and impaired diastolic filling. We investigated to what extent myocardial functional defects can be explained by alterations in the passive and active properties of human cardiac myofibrils. Skinned ventricular myocytes were prepared from patients with obstructive HCM (two patients with MYBPC3 mutations, one with a MYH7 mutation, and three with no mutation in either gene) and from four donors. Passive stiffness, viscous properties, and titin isoform expression were similar in HCM myocytes and donor myocytes. Maximal Ca2+-activated force was much lower in HCM myocytes (14 ± 1 kN/m2) than in donor myocytes (23 ± 3 kN/m2; P < 0.01), though cross-bridge kinetics (ktr) during maximal Ca2+ activation were 10% faster in HCM myocytes. Myofibrillar Ca2+ sensitivity in HCM myocytes (pCa50 = 6.40 ± 0.05) was higher than for donor myocytes (pCa50 = 6.09 ± 0.02; P < 0.001) and was associated with reduced phosphorylation of troponin-I (ser-23/24) and MyBP-C (ser-282) in HCM myocytes. These characteristics were common to all six HCM patients and may therefore represent a secondary consequence of the known and unknown underlying genetic variants. Some HCM patients did however exhibit an altered relationship between force and cross-bridge kinetics at submaximal Ca2+ concentrations, which may reflect the primary mutation. We conclude that the passive viscoelastic properties of the myocytes are unlikely to account for the increased stiffness of the HCM ventricle. However, the low maximum Ca2+-activated force and high Ca2+ sensitivity of the myofilaments are likely to contribute substantially to any systolic and diastolic dysfunction, respectively, in hearts of HCM patients.
Research Highlights
► The passive stiffness of skinned HCM cardiac myocytes was similar to that of normal (donor) myocytes. ► Maximum Ca-activated force production was reduced by 40% in HCM vs donor myocytes. ► This loss of force could contribute to systolic dysfunction in HCM hearts. ► Myofibrillar Ca sensitivity was higher in HCM than in donor myocytes. ► The enhanced Ca sensitivity could compensate for the smaller maximum force but would tend to cause diastolic dysfunction. ► These characteristics were common to all HCM patients studied, suggesting the changes were secondary consequence of the underlying genetic variants.
PMCID: PMC2954357  PMID: 20615414
Hypertrophic cardiomyopathy; Skinned cardiac myocytes; Viscoelasticity; Ca2+ sensitivity; Cross-bridge kinetics
25.  The role of vascular myoglobin in nitrite-mediated blood vessel relaxation 
Cardiovascular Research  2010;89(3):560-565.
This work investigates the role of myoglobin in mediating the vascular relaxation induced by nitrite. Nitrite, previously considered an inert by-product of nitric oxide metabolism, is now believed to play an important role in several areas of pharmacology and physiology. Myoglobin can act as a nitrite reductase in the heart, where it is plentiful, but it is present at a far lower level in vascular smooth muscle—indeed, its existence in the vessel wall is controversial. Haem proteins have been postulated to be important in nitrite-induced vasodilation, but the specific role of myoglobin is unknown. The current study was designed to confirm the presence of myoglobin in murine aortic tissue and to test the hypothesis that vascular wall myoglobin is important for nitrite-induced vasodilation.
Methods and results
Aortic rings from wild-type and myoglobin knockout mice were challenged with nitrite, before and after exposure to the haem-protein inhibitor carbon monoxide (CO). CO inhibited vasodilation in wild-type rings but not in myoglobin-deficient rings. Restitution of myoglobin using a genetically modified adenovirus both increased vasodilation to nitrite and reinstated the wild-type pattern of response to CO.
Myoglobin is present in the murine vasculature and contributes significantly to nitrite-induced vasodilation.
PMCID: PMC3028970  PMID: 20889759
Vasodilation; Nitrite; Nitric oxide; Myoglobin

Results 1-25 (38)