PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Failure of cell cleavage induces senescence in tetraploid primary cells 
Molecular Biology of the Cell  2014;25(20):3105-3118.
Induction of tetraploidy through cleavage failure induces G1 arrest and senescence in primary mammalian cells but not in immortal cells. Induction of senescence occurs without DNA damage, and the capacity to become senescent appears to be a prerequisite of tetraploid arrest.
Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen–transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.
doi:10.1091/mbc.E14-03-0844
PMCID: PMC4196863  PMID: 25143403
2.  Making it stick: chasing the optimal stem cells for cardiac regeneration 
Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing.
doi:10.1586/14779072.2014.972941
PMCID: PMC4254743  PMID: 25340282
adult stem cell; aging; cardiochimera; cardiocluster; commitment; communication; diversity; microenvironment; proliferation; survival
3.  Cardiac Hegemony of Senescence 
Cardiac senescence and age-related disease development have gained general attention and recognition in the past decades due to increased accessibility and quality of health care. The advancement in global civilization is complementary to concerns regarding population aging and development of chronic degenerative diseases. Cardiac degeneration has been rigorously studied. The molecular mechanisms of cardiac senescence are on multiple cellular levels and hold a multilayer complexity level, thereby hampering development of unambiguous treatment protocols. In particular, the synergistic exchange of the senescence phenotype through a senescence secretome between myocytes and stem cells appears complicated and is of great future therapeutic value. The current review article will highlight hallmarks of senescence, cardiac myocyte and stem cell senescence, and the mutual exchange of senescent secretome. Future cardiac cell therapy approaches require a comprehensive understanding of myocardial senescence to improve therapeutic efficiency as well as efficacy.
doi:10.1007/s13670-013-0064-3
PMCID: PMC3862253  PMID: 24349878
Aging; Senescence; Cardiomyocytes; Cardiac stem cells; Senescence-associated secretory phenotype (SASP); Rejuvenation
5.  Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth 
Basic research in cardiology  2013;108(5):10.1007/s00395-013-0375-8.
Background
Ability of the heart to undergo pathological or physiological hypertrophy upon increased wall stress is critical for long-term compensatory function in response to increased workload demand. While substantial information has been published on the nature of the fundamental molecular signaling involved in hypertrophy, the role of extracellular matrix (ECM) protein Fibronectin (Fn) in hypertrophic signaling is unclear.
Objective
Delineate the role of Fn during pressure overload-induced pathological cardiac hypertrophy and physiological growth prompted by exercise.
Methods and Results
Genetic conditional ablation of Fn in adulthood blunts cardiomyocyte hypertrophy upon pressure overload via attenuated activation of Nuclear Factor of Activated T cells (NFAT). Loss of Fn delays development of heart failure and improves survival. In contrast, genetic deletion of Fn has no impact on physiological cardiac growth induced by voluntary wheel running. Down regulation of the transcription factor c/EBPβ (Ccaat-enhanced binding protein β), which is essential for induction of the physiological growth program, is unaffected by Fn deletion. Nuclear NFAT translocation is triggered by Fn in conjunction with up-regulation of the fetal gene program and hypertrophy of cardiomyocytes in vitro. Furthermore, activation of the physiological gene program induced by Insulin stimulation in vitro is attenuated by Fn, whereas Insulin had no impact on Fn-induced pathological growth program.
Conclusion
Fn contributes to pathological cardiomyocyte hypertrophy in vitro and in vivo via NFAT activation. Fn is dispensable for physiological growth in vivo, and Fn attenuates the activation of the physiological growth program in vitro.
doi:10.1007/s00395-013-0375-8
PMCID: PMC3813434  PMID: 23912225
cardiomyocytes; pathological and physiological hypertrophy; fibronectin; heart failure
6.  Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase 
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure.
doi:10.1586/14779072.2013.814830
PMCID: PMC4140652  PMID: 23984924
cell therapy; cardiac progenitor cell gene therapy; heart failure; Pim-1 senescenc
7.  Mechanistic Target of Rapamycin Complex 2 Protects the Heart From Ischemic Damage 
Circulation  2013;128(19):2132-2144.
Background
The mechanistic target of rapamycin (mTOR) comprises 2 structurally distinct multiprotein complexes, mTOR complexes 1 and 2 (mTORC1 and mTORC2). Deregulation of mTOR signaling occurs during and contributes to the severity of myocardial damage from ischemic heart disease. However, the relative roles of mTORC1 versus mTORC2 in the pathogenesis of ischemic damage are unknown.
Methods and Results
Combined pharmacological and molecular approaches were used to alter the balance of mTORC1 and mTORC2 signaling in cultured cardiac myocytes and in mouse hearts subjected to conditions that mimic ischemic heart disease. The importance of mTOR signaling in cardiac protection was demonstrated by pharmacological inhibition of both mTORC1 and mTORC2 with Torin1, which led to increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. Predominant mTORC1 signaling mediated by suppression of mTORC2 with Rictor similarly increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. In comparison, preferentially shifting toward mTORC2 signaling by inhibition of mTORC1 with PRAS40 led to decreased cardiomyocyte apoptosis and tissue damage after myocardial infarction.
Conclusions
These results suggest that selectively increasing mTORC2 while concurrently inhibiting mTORC1 signaling is a novel therapeutic approach for the treatment of ischemic heart disease.
doi:10.1161/CIRCULATIONAHA.113.003638
PMCID: PMC4131547  PMID: 24008870
AKT1S1 protein; human; RICTOR protein; human; TOR serine-threonine kinases
8.  The Impact of Juvenile Coxsackievirus Infection on Cardiac Progenitor Cells and Postnatal Heart Development 
PLoS Pathogens  2014;10(7):e1004249.
Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load.
Author Summary
Coxsackievirus B (CVB) is a significant human pathogen, causing myocarditis, aseptic meningitis and encephalitis. The lasting consequences of juvenile CVB infection on the developing host have yet to be adequately inspected. Here, we show that CVB efficiently infected juvenile cardiac progenitor cells both in culture and the young heart. Furthermore, we describe a mouse model of juvenile infection with a subclinical dose of CVB which showed no symptoms of disease into adulthood. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. These results suggest that mild CVB infection in the young host may impair the ability of the heart to adapt to increased load leading to pathological remodeling later in adult life.
doi:10.1371/journal.ppat.1004249
PMCID: PMC4117602  PMID: 25079373
9.  Fibronectin is Essential for Reparative Cardiac Progenitor Cell Response Following Myocardial Infarction 
Circulation research  2013;113(2):10.1161/CIRCRESAHA.113.301152.
Rationale
Adoptive transfer of cardiac progenitor cells (CPCs) has entered clinical application despite limited mechanistic understanding of the endogenous response following myocardial infarction (MI). Extracellular matrix (ECM) undergoes dramatic changes after MI and therefore might be linked to CPC-mediated repair.
Objective
Demonstrate the significance of Fibronectin (Fn), a component of the ECM, for induction of the endogenous CPC response to MI.
Methods and Results
This report shows that presence of CPCs correlates with expression of Fn during cardiac development and after MI. In vivo, genetic conditional ablation of Fn blunts CPC response measured 7 days after MI through reduced proliferation and diminished survival. Attenuated vasculogenesis and cardiogenesis during recovery was evident at the end of a 12 week follow-up period. Impaired CPC-dependent reparative remodeling ultimately leads to continuous decline of cardiac function in Fn knockout animals. In vitro, Fn protects and induces proliferation of CPCs via β1-Integrin-FAK-Stat3-Pim1 but Akt-independent mechanism.
Conclusion
Fn is essential for endogenous CPC expansion and repair needed for stabilization of cardiac function after MI.
doi:10.1161/CIRCRESAHA.113.301152
PMCID: PMC3815660  PMID: 23652800
Adult stem cells; myocardial infarction; adhesion molecule; fibronectin
10.  Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte 
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
doi:10.1586/erc.09.48
PMCID: PMC4066730  PMID: 19673671
Akt; cardiomyocyte; heart; hexokinase; kinase; mitochondria; Pim-1
11.  Evolution of the c-kit-Positive Cell Response to Pathological Challenge in the Myocardium 
Stem cells (Dayton, Ohio)  2008;26(5):1315-1324.
Cumulative evidence indicates that myocardium responds to growth or injury by recruitment of stem and/or progenitor cells that participate in repair and regenerative processes. Unequivocal identification of this population has been hampered by lack of reagents or markers specific to the recruited population, leading to controversies regarding the nature of these cells. Use of a transgenic mouse expressing green fluorescent protein driven by the c-kit promoter allows for unambiguous identification of this cell population. Green fluorescent protein (GFP) driven by the c-kit promoter labels a fraction of the c-kit + cells recognized by antibody labeling for c-kit protein. Expression of GFP by the c-kit promoter and accumulation of GFP-positive cells in the myocardium is relatively high at birth compared with adult and declines between postnatal weeks 1 and 2, which tracks in parallel with expression of c-kit protein and c-kit-positive cells. Acute cardiomyopathic injury by infarction prompts increased expression of both GFP protein and GFP-labeled cells in the region of infarction relative to remote myocardium. Similar increases were observed for c-kit protein and cells with a slightly earlier onset and decline relative to the GFP signal. Cells coexpressing GFP, c-kit, and cardiogenic markers were apparent at 1–2 weeks postinfarction. Cardiac-resident c-kit+ cell cultures derived from the transgenic line express GFP that is diminished in parallel with c-kit by induction of differentiation. The use of genetically engineered mice validates and extends the concept of c-kit+ cells participating in the response to myocardial injury.
doi:10.1634/stemcells.2007-0751
PMCID: PMC4037162  PMID: 18308948
c-kit; Heart; Infarction; Cardiac stem cell
12.  Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1 
Circulation research  2013;112(9):1244-1252.
Rationale
Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based upon the phosphorylation status of involved signaling molecules. While numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the non-myocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown.
Objective
To establish the role of Pin1 in the heart.
Methods and Results
Here we show that either genetic deletion or cardiac over-expression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, MEK and Raf-1 in cultured cardiomyocytes following hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, while over-expression of Pin1 increases Raf-1 phosphorylation on the auto-inhibitory site Ser259 leading to reduced MEK activation.
Conclusions
Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of two major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.
doi:10.1161/CIRCRESAHA.113.301084
PMCID: PMC3742109  PMID: 23487407
Pin1; cardiomyocyte; Akt; Raf-MEK-ERK; hypertrophy; signal transduction; molecular biology; heart failure
13.  Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase 
Circulation research  2013;113(10):1169-1179.
Rationale
Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells.
Objective
Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1.
Methods and Results
C-kit–positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers.
Conclusions
Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.
doi:10.1161/CIRCRESAHA.113.302302
PMCID: PMC3999968  PMID: 24044948
aging; cell cycle proteins; heart failure; telomere lengthening
14.  Predicting the Future With Stem Cells 
Circulation  2013;129(2):136-138.
doi:10.1161/CIRCULATIONAHA.113.007045
PMCID: PMC3919528  PMID: 24249719
Editorial; coronary bypass surgery; stem cells; ventricular remodeling
15.  Enhanced Effect of Human Cardiac Stem Cells and Bone Marrow Mesenchymal Stem Cells to Reduce Infarct Size and Restore Cardiac Function after Myocardial Infarction 
Circulation  2012;127(2):213-223.
Background
As mesenchymal stem cells (MSCs) induce proliferation and differentiation of c-kit+ cardiac stem cells (CSCs) in vivo and in vitro, we hypothesized that combining human (h)MSCs with c-kit+ hCSCs produces greater infarct size reduction compared to either cell administered alone after MI.
Methods and Results
Yorkshire swine underwent balloon occlusion of the LAD coronary artery followed by reperfusion, and were immunosuppressed after MI with cyclosporine and methylprednisolone. Intramyocardial injection of either: combination hCSCs/hMSCs (1M/200M, n=5), hCSCs alone (1M, n=5), hMSCs alone (200M, n=5), or placebo (PBS, n=5) was administered to the infarct border zones at 14 days post-MI. Phenotypic response to cell therapy was assessed by cardiac MRI and micromanometer conductance catheterization hemodynamics. While each cell therapy group had reduced MI size relative to placebo (p<0.05), the MI size reduction was 2-fold greater in combination vs. either cell therapy alone (p<0.05). Accompanying enhanced MI size reduction was substantial improvement in LV chamber compliance (end-diastolic pressure volume relationship, p<0.01) and contractility (preload recruitable stroke work and dP/dtmax, p<0.05) in combination treated swine. EF was restored to baseline in cell treated pigs, while placebo pigs had persistently depressed LV function (p<0.05). Immunohistochemistry showed 7-fold enhanced engraftment of stem cells in the combination therapy group vs. either cell type alone (P<0.001).
Conclusions
Combining hMSCs and hCSCs as a cell therapeutic enhances scar size reduction, and restores diastolic and systolic function toward normal after MI. Taken together these findings illustrate important biological interactions between c-kit+ CSCs and MSCs that enhance cell-based therapeutic responses.
doi:10.1161/CIRCULATIONAHA.112.131110
PMCID: PMC3579523  PMID: 23224061
cardiac stem cells; mesenchymal stem cells; heart failure
16.  PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity 
EMBO Molecular Medicine  2013;6(1):57-65.
Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.
doi:10.1002/emmm.201303183
PMCID: PMC3936489  PMID: 24408966
diabetes; PRAS40; mTOR
17.  CENP-A is essential for cardiac progenitor cell proliferation 
Cell Cycle  2013;13(5):739-748.
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs.
doi:10.4161/cc.27549
PMCID: PMC3979910  PMID: 24362315
CENP-A; cardiac progenitor cell; heart; cell cycle; senescence
18.  Increased Mitotic Rate Coincident With Transient Telomere Lengthening resulting from Pim-1 Overexpression in Cardiac Progenitor Cells 
Stem cells (Dayton, Ohio)  2012;30(11):2512-2522.
Cardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration. Prior studies have demonstrated enhancement of myocardial regeneration by engineering CPCs to express Pim-1 kinase, but cellular and molecular mechanisms for Pim-1 mediated effects on CPCs remain obscure. We find CPCs rapidly expand following overexpression of cardioprotective kinase Pim-1 (CPCeP), however increases in mitotic rate are short lived as late passage CPCePs proliferate similar to control CPCs. Telomere elongation consistent with a young phenotype is observed following Pim-1 modification of CPCeP; in addition telomere elongation coincides with increased telomerase expression and activity. Interestingly, telomere length and telomerase activity normalize after several rounds of passaging, consistent with the ability of Pim-1 to transiently increase mitosis without resultant oncogenic transformation. Accelerating mitosis in CPCeP without immortalization represents a novel strategy to expand the CPC population in order to improve their therapeutic efficacy.
doi:10.1002/stem.1211
PMCID: PMC3479348  PMID: 22915504
Pim-1; Telomere; Cardiac progenitor cell; Telomerase
19.  mTOR/PRAS40 interaction 
Cell Cycle  2013;12(23):3579-3580.
doi:10.4161/cc.26822
PMCID: PMC3903704  PMID: 24131922
PRAS40; mTOR; hypertrophy; mTORC1; growth; cell cycle; cardiac
20.  HUMAN CARDIAC PROGENITOR CELLS ENGINEERED WITH PIM-1 KINASE ENHANCE MYOCARDIAL REPAIR 
Objective
Enhancement of human cardiac progenitor cell (hCPC) reparative and regenerative potential by genetic modification for treatment of myocardial infarction.
Background
Regenerative potential of stem cells to repair acute infarction is limited. Improved hCPC survival, proliferation and differentiation into functional myocardium will increase efficacy and advance translational implementation of cardiac regeneration.
Methods
hCPCs isolated from myocardium of heart failure patients undergoing left ventricular assist device (LVAD) implantation are engineered to express green fluorescent protein (GFP; hCPCe) or Pim-1-GFP (hCPCeP). Functional tests of hCPC regenerative potential are performed with immunocompromised mice by intramyocardial adoptive transfer injection after infarction. Myocardial structure and function is monitored by echocardiographic and hemodynamic assessment for 20 weeks following delivery. hCPCe and hCPCeP expressing luciferase are followed by bioluminesence imaging (BLI) to non-invasively track persistence.
Results
hCPCeP exhibit augmentation of reparative potential relative to hCPCe control cells as demonstrated by significantly increased proliferation coupled with amelioration of infarction injury and increased hemodynamic performance at 20 weeks post-transplantation. Concurrent with enhanced cardiac structure and function, hCPCeP demonstrate increased cellular engraftment and differentiation with improved vasculature and reduced infarct size. Enhanced persistence of hCPCeP versus hCPCe is revealed by BLI at up to 8 weeks post delivery.
Conclusion
Genetic engineering of hCPCs with Pim-1 enhances repair of damaged myocardium. Ex vivo gene delivery to modify stem cells has emerged as a viable option addressing current limitations in the field. This study demonstrates that efficacy of human CPCs from the failing myocardium can be safely and significantly enhanced through expression of Pim-1 kinase, setting the stage for use of engineered cells in preclinical settings.
doi:10.1016/j.jacc.2012.04.047
PMCID: PMC3461098  PMID: 22841153
human cardiac progenitor cells; Pim-1 kinase; heart repair
21.  Activation of Notch-Mediated Protective Signaling in the Myocardium 
Circulation research  2008;102(9):1025-1035.
The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury.
doi:10.1161/CIRCRESAHA.107.164749
PMCID: PMC3760732  PMID: 18369158
Notch; Akt; cardioprotection; infarction; myocardium
22.  Sca-1 Knockout Impairs Myocardial and Cardiac Progenitor Cell Function 
Circulation research  2012;111(6):750-760.
Rationale
Cardiac progenitor cells are important for maintenance of myocardial structure and function, but molecular mechanisms governing these progenitor cells remain obscure and require elucidation to enhance regenerative therapeutic approaches.
Objective
To understand consequences of stem cell antigen-1 (Sca-1) deletion upon functional properties of c-kit+ cardiac progenitor cells and myocardial performance using a Sca-1 knockout/Green Fluorescent Protein knock-in reporter mouse (ScaKI).
Methods and Results
Genetic deletion of Sca-1 results in early-onset cardiac contractile deficiency as determined by echocardiography and hemodynamics as well as age-associated hypertrophy. Resident cardiac progenitor cells in ScaKI mice do not respond to pathological damage in vivo, consistent with observations of impaired growth and survival of ScaKI cardiac progenitor cells in vitro. The molecular basis of the defect in ScaKI cardiac progenitor cells is associated with increased canonical Wnt signaling pathway activation consistent with molecular characteristics of lineage commitment.
Conclusions
Genetic deletion of Sca-1 causes primary cardiac defects in myocardial contractility and repair consistent with impairment of resident cardiac progenitor cell proliferative capacity associated with altered canonical Wnt signaling.
doi:10.1161/CIRCRESAHA.112.274662
PMCID: PMC3463406  PMID: 22800687
Sca-1; c-kit; heart; cardiac progenitor cell; infarction; myocardium; Sca-1 knock-out; β–catenin; cardiac development
23.  Preservation of Myocardial Structure is Enhanced by Pim-1 Engineering of Bone Marrow Cells 
Circulation Research  2012;111(1):77-86.
Rationale
Bone marrow derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells.
Objective
Demonstrate long-term potential of c-kit+ bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling.
Methods and Results
Lentiviral modification of c-kit+ BMCs to express Pim-1 (BMCeP) increases proliferation and expression of pro-survival proteins relative to BMCs expressing GFP (BMCe). Intramyocardial delivery of BMCeP at time of infarction supports improvements in anterior wall dimensions and prevents left ventricle dilation compared to hearts treated with vehicle alone. Reduction of the akinetic left ventricular wall was observed in BMCeP treated hearts at 4 and 12 weeks after infarction. Early recovery of cardiac function in BMCeP-injected hearts facilitated modest improvements in hemodynamic function up to 12 weeks post infarction between cell treated groups. Persistence of BMCeP is improved relative to BMCe within the infarct together with increased recruitment of endogenous c-kit+ cells. Delivery of BMC populations promotes cellular hypertrophy in the border and infarcted regions coupled with an up regulation of hypertrophic genes. Thus, BMCeP treatment yields improved structural remodeling of infarcted myocardium compared to control BMCs.
Conclusions
Genetic modification of BMCs with Pim-1 may serve as a therapeutic approach to promote recovery of myocardial structure. Future approaches may take advantage of salutary BMC actions in conjunction with other stem cell types to increase efficacy of cellular therapy and improve myocardial performance in the injured myocardium.
doi:10.1161/CIRCRESAHA.112.265207
PMCID: PMC3398618  PMID: 22619278
Pim-1; bone marrow cells; myocardial infarction; myocardial structure; hypertrophy
24.  MYOCARDIAL AKT: THE OMNIPRESENT NEXUS 
Physiological reviews  2011;91(3):1023-1070.
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
doi:10.1152/physrev.00024.2010
PMCID: PMC3674828  PMID: 21742795
25.  Notch signaling and cardiac repair 
Notch signaling is critical for proper heart development and recently has been reported to participate in adult cardiac repair. Notch resides at the cell surface as a single pass transmembrane receptor, transits through the cytoplasm following activation, and acts as a transcription factor upon entering the nucleus. This dynamic and widespread cellular distribution allows for potential interactions with many signaling and binding partners. Notch displays temporal as well as spatial versatility, acting as a strong developmental signal, controlling cell fate determination and lineage commitment, and playing a pivotal role in embryonic and adult stem cell proliferation and differentiation. This review serves as an update of recent literature addressing Notch signaling in the heart, with attention to findings from non cardiac research that provide clues for further interpretation of how the Notch pathway influences cardiac biology. Specific areas of focus include Notch signaling in adult myocardium following pathologic injury, the role of Notch in cardiac progenitor cells with respect to differentiation and cardiac repair, crosstalk between Notch and other cardiac signaling pathways, and emerging aspects of noncanonical Notch signaling in heart.
doi:10.1016/j.yjmcc.2012.03.007
PMCID: PMC3348268  PMID: 22465038
Notch; Cardioprotection; Progenitor; Regeneration; Crosstalk; Noncanonical

Results 1-25 (57)