Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Selective Role for Mek1 but not Mek2 in the Induction of Epidermal Neoplasia 
Cancer research  2009;69(9):3772-3778.
The Ras/Raf/Mek/Erk mitogen-activated protein kinase pathway regulates fundamental processes in normal and malignant cells, including proliferation, differentiation, and cell survival. Mutations in this pathway have been associated with carcinogenesis and developmental disorders, making Mek1 and Mek2 prime therapeutic targets. In this study, we examined the requirement for Mek1 and Mek2 in skin neoplasia using the two-step 7,12-dimethylbenz(a)anthraacene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) skin carcinogenesis model. Mice lacking epidermal Mek1 protein develop fewer papillomas than both wild-type and Mek2-null mice following DMBA/TPA treatment. Mek1 knockout mice had smaller papillomas, delayed tumor onset, and half the tumor burden of wild-type mice. Loss of one Mek1 allele, however, did not affect tumor development, indicating that one Mek1 allele is sufficient for normal papilloma formation. No difference in TPA-induced hyperproliferation, inflammation, or Erk activation was observed between wild-type, conditional Mek1 knockout, and Mek2-null mice, indicating that Mek1 findings were not due to a general failure of these processes. These data show that Mek1 is important for skin tumor development and that Mek2 cannot compensate for the loss of Mek1 function in this setting.
PMCID: PMC3576816  PMID: 19383924
2.  Modeling Inducible Human Tissue Neoplasia Identifies an Extracellular Matrix Interaction Network Involved in Cancer Progression 
Cancer cell  2009;15(6):477-488.
To elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the β1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Investigating tumor progression in patient samples is complicated by etiologic heterogeneity, genetic instability, and an overabundance of precursor lesions that fail to progress. These complexities obscure construction of a dynamic picture of progression from normal tissue to invasive cancer. Here, we generate inducible human neoplasia driven by conditionally active Ras and characterize the sequence of gene expression programs engaged in epithelial tumor tissue and adjacent stroma during carcinogenesis. We show that tumor-intrinsic gene expression can be refined by sufficient downstream oncogene effectors and apply a generalizable network modeling strategy to prioritize targets based upon local interconnectivity. This analysis highlights the importance of tumor-stroma interaction during tumorigenesis and identifies β integrin as a potential oncotherapeutic that distinguishes normal and neoplastic tissue.
PMCID: PMC3050547  PMID: 19477427
Cancer; Gene Expression; Skin; Stroma; Tumor Progression
3.  Erk1/2 MAP kinases are required for epidermal G2/M progression 
The Journal of Cell Biology  2009;185(3):409-422.
Erk1/2 mitogen-activated protein kinases (MAPKs) are often hyperactivated in human cancers, where they affect multiple processes, including proliferation. However, the effects of Erk1/2 loss in normal epithelial tissue, the setting of most extracellular signal-regulated kinase (Erk)–associated neoplasms, are unknown. In epidermis, loss of Erk1 or Erk2 individually has no effect, whereas simultaneous Erk1/2 depletion inhibits cell division, demonstrating that these MAPKs are necessary for normal tissue self-renewal. Growth inhibition caused by Erk1/2 loss is rescued by reintroducing Erk2, but not by activating Erk effectors that promote G1 cell cycle progression. Unlike fibroblasts, in which Erk1/2 loss decreases cyclin D1 expression and induces G1/S arrest, Erk1/2 loss in epithelial cells reduces cyclin B1 and c-Fos expression and induces G2/M arrest while disrupting a gene regulatory network centered on cyclin B1–Cdc2. Thus, the cell cycle stages at which Erk1/2 activity is required vary by cell type, with Erk1/2 functioning in epithelial cells to enable progression through G2/M.
PMCID: PMC2700391  PMID: 19414607
4.  Dral Is a P53-Responsive Gene Whose Four and a Half Lim Domain Protein Product Induces Apoptosis 
The Journal of Cell Biology  2000;151(3):495-506.
DRAL is a four and a half LIM domain protein identified because of its differential expression between normal human myoblasts and the malignant counterparts, rhabdomyosarcoma cells. In the current study, we demonstrate that transcription of the DRAL gene can be stimulated by p53, since transient expression of functional p53 in rhabdomyosarcoma cells as well as stimulation of endogenous p53 by ionizing radiation in wild-type cells enhances DRAL mRNA levels. In support of these observations, five potential p53 target sites could be identified in the promoter region of the human DRAL gene. To obtain insight into the possible functions of DRAL, ectopic expression experiments were performed. Interestingly, DRAL expression efficiently triggered apoptosis in three cell lines of different origin to the extent that no cells could be generated that stably overexpressed this protein. However, transient transfection experiments as well as immunofluorescence staining of the endogenous protein allowed for the localization of DRAL in different cellular compartments, namely cytoplasm, nucleus, focal contacts, as well as Z-discs and to a lesser extent the M-bands in cardiac myofibrils. These data suggest that downregulation of DRAL might be involved in tumor development. Furthermore, DRAL expression might be important for heart function.
PMCID: PMC2185594  PMID: 11062252
LIM domain protein; transcriptional regulation; p53; apoptosis; subcellular localization

Results 1-4 (4)