Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Phenotype and prognostic correlations of the converter region mutations affecting the β myosin heavy chain 
Heart  2015;101(13):1047-1053.
The prognostic value of genetic studies in cardiomyopathies is still controversial. Our objective was to evaluate the outcome of patients with cardiomyopathy with mutations in the converter domain of β myosin heavy chain (MYH7).
Clinical characteristics and survival of 117 affected members with mutations in the converter domain of MYH7 were compared with 409 patients described in the literature with mutations in the same region.
Twenty-five mutations were evaluated (9 in our families including 3 novel (Ile730Asn, Asp717Gly and Arg719Pro)). Clinical diagnoses were hypertrophic (n=407), dilated (n=15), non-compaction (n=4) and restrictive (n=5) cardiomyopathies, unspecified cardiomyopathy (n=11), sudden death (n=50) and 35 healthy carriers. One hundred eighty-four had events (cardiovascular death or transplant). Median event-free survival was 50±2 years in our patients and 53±3 years in the literature (p=0.27). There were significant differences in the outcome between mutation: Ile736Thr had fewer events than other mutations in the region (p=0.01), while Arg719Gln (p<0.01) had reduced event-free survival.
Mutations in the converter region are generally associated with adverse prognosis although there are differences between mutations. The identification of a mutation in this particular region provides important prognostic information that should be considered in the clinical management of affected patients.
PMCID: PMC4484257  PMID: 25935763
2.  Novel genotype–phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy 
Heart  2014;101(4):294-301.
A predictable relation between genotype and disease expression is needed in order to use genetic testing for clinical decision-making in hypertrophic cardiomyopathy (HCM). The primary aims of this study were to examine the phenotypes associated with sarcomere protein (SP) gene mutations and test the hypothesis that variation in non-sarcomere genes modifies the phenotype.
Unrelated and consecutive patients were clinically evaluated and prospectively followed in a specialist clinic. High-throughput sequencing was used to analyse 41 genes implicated in inherited cardiac conditions. Variants in SP and non-SP genes were tested for associations with phenotype and survival.
874 patients (49.6±15.4 years, 67.8% men) were studied; likely disease-causing SP gene variants were detected in 383 (43.8%). Patients with SP variants were characterised by younger age and higher prevalence of family history of HCM, family history of sudden cardiac death, asymmetric septal hypertrophy, greater maximum LV wall thickness (all p values<0.0005) and an increased incidence of cardiovascular death (p=0.012). Similar associations were observed for individual SP genes. Patients with ANK2 variants had greater maximum wall thickness (p=0.0005). Associations at a lower level of significance were demonstrated with variation in other non-SP genes.
Patients with HCM caused by rare SP variants differ with respect to age at presentation, family history of the disease, morphology and survival from patients without SP variants. Novel associations for SP genes are reported and, for the first time, we demonstrate possible influence of variation in non-SP genes associated with other forms of cardiomyopathy and arrhythmia syndromes on the clinical phenotype of HCM.
PMCID: PMC4345808  PMID: 25351510
4.  Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy 
European Heart Journal  2010;32(2):177-183.
Cardiotrophin-1 (CT-1) is a cytokine that induces hypertrophy in cardiomyocytes and is associated with left ventricular hypertrophy (LVH) in hypertensive patients. The objective of this study was to evaluate whether plasma CT-1 is associated with hypertrophic cardiomyopathy (HCM).
Methods and results
The study was performed in 124 patients with HCM. All patients underwent a full clinical evaluation and an echocardiogram. Left ventricular hypertrophy was evaluated by the measurement of the maximal LV wall thickness and the Spirito's LVH score. Plasma CT-1 was measured by an enzyme-linked immunosorbent assay. Compared with controls, patients with HCM exhibited higher (P < 0.001) plasma CT-1 levels. Significant correlations were found between CT-1 and maximal LV wall thickness (r = 0.284, P = 0.001) and the Spirito's LVH score (r = 0.287, P = 0.006) in HCM patients. In addition, the levels of CT-1 were higher (P = 0.02) in patients with severe LVH (maximal LV wall thickness ≥30 mm) than in patients with mild or moderate LVH (maximal LV wall thickness <30 mm).
These findings show that plasma CT-1 is associated with the severity of LVH in patients with HCM. Further studies are required to ascertain whether CT-1 is a diagnostic biomarker of this cardiomyopathy.
PMCID: PMC3021387  PMID: 21059734
Hypertrophic cardiomyopathy; Cardiotrophin; Hypertrophy
5.  Novel missense mutations in exon 15 of desmoglein-2: Role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? 
Heart Rhythm  2010;7(10):1446-1453.
The diagnosis of arrhythmogenic right ventricular cardiomyopathy can be challenging. Disease-causing mutations in desmosomal genes have been identified. A novel diagnostic feature, loss of immunoreactivity for plakoglobin from the intercalated disks, recently was proposed.
The purpose of this study was to identify two novel mutations in the intracellular cadherin segment of desmoglein-2 (G812S and C813R in exon 15). Co-segregation of the G812S mutation with disease expression was established in a large Caucasian family. Endomyocardial biopsies of two individuals showed reduced plakoglobin signal at the intercalated disk.
To understand the pathologic changes occurring in the diseased myocardium, functional studies on three mutations in exon 15 of desmoglein-2 (G812C, G812S, C813R) were performed.
Localization studies failed to detect any differences in targeting or stability of the mutant proteins, suggesting that they act via a dominant negative mechanism. Binding assays were performed to probe for altered binding affinities toward other desmosomal proteins, such as plakoglobin and plakophilin-2. Although no differences were observed for the mutated proteins in comparison to wild-type desmoglein-2, binding to plakophilin-2 depended on the expression system (i.e., bacterial vs mammalian protein expression). In addition, abnormal migration of the C813R mutant protein was observed in gel electrophoresis.
Loss of plakoglobin immunoreactivity from the intercalated disks appears to be the endpoint of complex pathologic changes, and our functional data suggest that yet unknown posttranslational modifications of desmoglein-2 might be involved.
PMCID: PMC2994644  PMID: 20708101
Arrhythmogenic right ventricular cardiomyopathy; Desmoglein-2; Desmosome; Genetics; Missense mutation; Plakophilin-2; ARVC, arrhythmogenic right ventricular cardiomyopathy; Cx43, connexin43; DSC2, desmocollin-2; DSG2, desmoglein-2; DSP, desmoplakin; GFP, green fluorescent protein; GST, glutathione-S-transferase; ICS, intracellular cadherin segment; PG, plakoglobin; PKP2, plakophilin-2; RV, right ventricle
6.  Screening mutations in myosin binding protein C3 gene in a cohort of patients with Hypertrophic Cardiomyopathy 
BMC Medical Genetics  2010;11:67.
MyBPC3 mutations are amongst the most frequent causes of hypertrophic cardiomyopathy, however, its prevalence varies between populations. They have been associated with mild and late onset disease expression. Our objectives were to establish the prevalence of MyBPC3 mutations and determine their associated clinical characteristics in our patients.
Screening by Single Strand Conformation Polymorphisms (SSCP) and sequencing of the fragments with abnormal motility of the MyBPC3 gene in 130 unrelated consecutive HCM index cases. Genotype-Phenotype correlation studies were done in positive families.
16 mutations were found in 20 index cases (15%): 5 novel [D75N, V471E, Q327fs, IVS6+5G>A (homozygous), and IVS11-9G>A] and 11 previously described [A216T, R495W, R502Q (2 families), E542Q (3 families), T957S, R1022P (2 families), E1179K, K504del, K600fs, P955fs and IVS29+5G>A]. Maximum wall thickness and age at time of diagnosis were similar to patients with MYH7 mutations [25(7) vs. 27(8), p = 0.16], [46(16) vs. 44(19), p = 0.9].
Mutations in MyBPC3 are present in 15% of our hypertrophic cardiomyopathy families. Severe hypertrophy and early expression are compatible with the presence of MyBPC3 mutations. The genetic diagnosis not only allows avoiding clinical follow up of non carriers but it opens new possibilities that includes: to take preventive clinical decisions in mutation carriers than have not developed the disease yet, the establishment of genotype-phenotype relationship, and to establish a genetic diagnosis routine in patients with familial HCM.
PMCID: PMC2880974  PMID: 20433692

Results 1-6 (6)