Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  From data gathering to systems medicine 
Cardiovascular Research  2013;97(4):599-600.
PMCID: PMC3583261  PMID: 23386274
2.  Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes* 
The Journal of Biological Chemistry  2013;289(3):1282-1293.
Background: Telethonin mutations are associated with cardiomyopathy through unknown mechanisms.
Results: Telethonin is a substrate for CaMK family kinases and exists in a bis-phosphorylated state in cardiomyocytes, in which non-phosphorylated telethonin disrupts transverse tubule organization and intracellular calcium transients.
Conclusion: Telethonin phosphorylation is critical for the maintenance of normal cardiomyocyte morphology and calcium handling.
Significance: Disruption of phospho-telethonin functions may contribute to pathogenesis in cardiomyopathy.
Telethonin (also known as titin-cap or t-cap) is a muscle-specific protein whose mutation is associated with cardiac and skeletal myopathies through unknown mechanisms. Our previous work identified cardiac telethonin as an interaction partner for the protein kinase D catalytic domain. In this study, kinase assays used in conjunction with MS and site-directed mutagenesis confirmed telethonin as a substrate for protein kinase D and Ca2+/calmodulin-dependent kinase II in vitro and identified Ser-157 and Ser-161 as the phosphorylation sites. Phosphate affinity electrophoresis and MS revealed endogenous telethonin to exist in a constitutively bis-phosphorylated form in isolated adult rat ventricular myocytes and in mouse and rat ventricular myocardium. Following heterologous expression in myocytes by adenoviral gene transfer, wild-type telethonin became bis-phosphorylated, whereas S157A/S161A telethonin remained non-phosphorylated. Nevertheless, both proteins localized predominantly to the sarcomeric Z-disc, where they partially replaced endogenous telethonin. Such partial replacement with S157A/S161A telethonin disrupted transverse tubule organization and prolonged the time to peak of the intracellular Ca2+ transient and increased its variance. These data reveal, for the first time, that cardiac telethonin is constitutively bis-phosphorylated and suggest that such phosphorylation is critical for normal telethonin function, which may include maintenance of transverse tubule organization and intracellular Ca2+ transients.
PMCID: PMC3894314  PMID: 24280220
CaMKII; Cardiac Muscle; Cardiomyopathy; Excitation-Contraction Coupling; Protein Kinase D (PKD); Protein Phosphorylation
We applied a combined proteomic and metabolomic approach to obtain novel mechanistic insights in PKCε-mediated cardioprotection. Mitochondrial and cytosolic proteins from control and transgenic hearts with constitutively active or dominant negative PKCε were analyzed using difference in-gel electrophoresis (DIGE). Among the differentially expressed proteins were creatine kinase, pyruvate kinase, lactate dehydrogenase, and the cytosolic isoforms of aspartate amino transferase and malate dehydrogenase, the two enzymatic components of the malate aspartate shuttle, which is required for the import of reducing equivalents from glycolysis across the inner mitochondrial membrane. These enzymatic changes appeared to be dependent on PKCε activity, as they were not observed in mice expressing inactive PKCε. High-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy confirmed a pronounced effect of PKCε activity on cardiac glucose and energy metabolism: normoxic hearts with constitutively active PKCε had significantly lower concentrations of glucose, lactate, glutamine and creatine, but higher levels of choline, glutamate and total adenosine nucleotides. Moreover, the depletion of cardiac energy metabolites was slower during ischemia/reperfusion injury and glucose metabolism recovered faster upon reperfusion in transgenic hearts with active PKCε. Notably, inhibition of PKCε resulted in compensatory phosphorylation and mitochondrial translocation of PKCδ. Taken together, our findings are the first evidence that PKCε activity modulates cardiac glucose metabolism and provide a possible explanation for the synergistic effect of PKCδ and PKCε in cardioprotection.
PMCID: PMC3661410  PMID: 19027023
proteomics; metabolism; cardioprotection; protein kinase C
4.  Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties* 
Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions.
PMCID: PMC3734580  PMID: 23660474
5.  Search Strategies for Glycopeptide Identification 
Byonic is a new proteomics search engine that can identify peptides carrying N- and O-linked glycans. Byonic offers a number of ways to search for glycopeptides, including preset glycan tables and manually entered glycan masses, and the search strategy affects the quality and quantity of spectrum assignments. Here we show how a progression of searches, from wider to narrower in both proteins and glycans, can improve sensitivity and specificity for glycopeptide identification.
We obtained data from the following samples: Glycophorin-A, PSA, human blood serum enriched for glycoproteins, and secreted proteins from human endothelial cells. All data were acquired on various Thermo Orbitrap instruments and included both HCD and ETD fragmentation. We first searched the data with a full human protein database with contaminants and decoys, and later with smaller databases produced by Byonic's “focused database” option. We started with Byonic's preset glycan search, which allows only one glycan per peptide, and then, guided by prior search results, augmented or replaced these tables with user-defined glycan modifications with appropriate limits on each type of modification.
We found that focused protein databases containing 10 – 200 proteins greatly improve the sensitivity of glycopeptide search relative to full-database searches. We found a database of likely glycoproteins, determined by PNG-ase release of N-glycans in O18 water, helpful for identifying glycopeptides carrying single N-linked glycans in the endothelial secretome. Focused glycan lists also improve sensitivity, and make possible still more complex searches. We have identified glycopeptides carrying up to two N-glycans, one N-glycan and one O-glycan, and up to four O-glycans, with only minor ambiguities in modification placement and mass distribution. More complex searches, for example, five or more O-glycans, will require improvements in completeness of fragmentation and computational methods.
PMCID: PMC3635383
6.  Nitrosative protein oxidation is modulated during early endotoxemia 
Formation of nitric oxide and its derivative reactive nitrogen species during endotoxemia has been implicated in the pathogenesis of the associated cardiovascular dysfunction. This stress can promote nitrosative post-translational modifications of proteins that may alter their activity and contribute to dysregulation. We utilised the ascorbate-dependent biotin-switch method to assay protein S-nitrosylation and immunoblotted for tyrosine nitration to monitor changes in nitrosative protein oxidation during endotoxemia. Hearts from lipopolysaccharide (LPS)-treated rats showed no apparent variation in global protein S-nitrosylation, but this may be due to the poor sensitivity of the biotin-switch method. To sensitise our monitoring of protein S-nitrosylation we exposed isolated hearts to the efficient trans-nitrosylating agent nitrosocysteine (which generated a robust biotin-switch signal) and then identified a number of target proteins using mass spectrometry. We were then able to probe for these target proteins in affinity-capture preparations of S-nitrosylated proteins prepared from vehicle- or LPS-treated animals. Unexpectedly this showed a time-dependent loss in S-nitrosylation during sepsis, which we hypothesised, may be due to concomitant superoxide formation that may lower nitric oxide but simultaneously generate the tyrosine-nitrating agent peroxynitrite. Indeed, this was confirmed by immunoblotting for global tyrosine nitration, which increased time-dependently and temporally correlated with a decrease in mean arterial pressure. We assessed if tyrosine nitration was causative in lowering blood pressure using the putative peroxynitrite scavenger FeTPPS. However, FeTPPS was ineffective in reducing global protein nitration and actually exacerbated LPS-induced hypotension.
PMCID: PMC3600856  PMID: 21130178
sepsis; lipopolysaccharide; nitrosative; S-nitrosylation; nitration; blood pressure
7.  Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome 
Perhexiline is a potent anti-anginal drug used for treatment of refractory angina and other forms of heart disease. It provides an oxygen sparing effect in the myocardium by creating a switch from fatty acid to glucose metabolism through partial inhibition of carnitine palmitoyltransferase 1 and 2. However, the precise molecular mechanisms underlying the cardioprotective effects elicited by perhexiline are not fully understood. The present study employed a combined proteomics, metabolomics and computational approach to characterise changes in murine hearts upon treatment with perhexiline. According to results based on difference in-gel electrophoresis, the most profound change in the cardiac proteome related to the activation of the pyruvate dehydrogenase complex. Metabolomic analysis by high-resolution nuclear magnetic resonance spectroscopy showed lower levels of total creatine and taurine in hearts of perhexiline-treated mice. Creatine and taurine levels were also significantly correlated in a cross-correlation analysis of all metabolites. Computational modelling suggested that far from inducing a simple shift from fatty acid to glucose oxidation, perhexiline may cause complex rebalancing of carbon and nucleotide phosphate fluxes, fuelled by increased lactate and amino acid uptake, to increase metabolic flexibility and to maintain cardiac output. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Graphical abstract
► Mice were fed perhexiline to achieve steady state concentrations. ► Hearts were analysed using a combined proteomic and metabolomic approach. ► Computer modelling was used to cross-validate the findings. ► Perhexiline has more wide-ranging and complex metabolic effects than previously thought.
PMCID: PMC3573230  PMID: 23277191
CPT, carnitine palmitoyltransferase; DIGE, difference in-gel electrophoresis; FCS, foetal calf serum; FDR, false discovery rate; GO, Gene ontology; 1H NMR, proton nuclear magnetic resonance spectroscopy; LC-MS/MS, liquid chromatography tandem mass spectrometry; TCA, tricarboxylic acid; Metabolomics; Proteomics; Cardioprotection; Metabolism; Heart failure
8.  Glycoproteomic Analysis of the Secretome of Human Endothelial Cells* 
Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H218O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap–orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H218O, 123 unique peptides displayed 18O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples.
PMCID: PMC3617342  PMID: 23345538
9.  Proteomics: from single molecules to biological pathways 
Cardiovascular Research  2012;97(4):612-622.
The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis and data integration. Proteins identified by differential expression as well as those in protein–protein interaction networks identified through experiments and through computational modelling techniques can be used as an initial starting point for functional analyses. In combination with other ‘-omics’ technologies, such as transcriptomics and metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our understanding of cardiovascular disease processes at a ‘biological pathway’ instead of a ‘single molecule’ level and accelerate progress towards disease-modifying interventions.
PMCID: PMC3583257  PMID: 23180722
Proteins; Metabolites; Mass spectrometry; Systems biology; Bioinformatics
10.  Novel Role of ADAMTS-5 Protein in Proteoglycan Turnover and Lipoprotein Retention in Atherosclerosis* 
The Journal of Biological Chemistry  2012;287(23):19341-19345.
Background: In atherosclerosis, proteoglycan accumulation results in increased lipoprotein retention.
Results: ADAMTS-5 is reduced in aortas of apolipoprotein E-null mice. ADAMTS-5 deficiency impairs processing of vascular proteoglycans, and ADAMTS-5 activity affects proteoglycan-mediated lipoprotein retention.
Conclusion: ADAMTS-5 regulates vascular proteoglycan catabolism and alters lipoprotein retention.
Significance: This is the first study implicating ADAMTS-5 proteolytic activity in atherosclerosis.
Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE−/−) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE441) and aggrecan (374ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE441 versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.
PMCID: PMC3365970  PMID: 22493487
Atherosclerosis; Cardiovascular Disease; Extracellular Matrix; Lipoprotein; Protease; Proteoglycan; ADAMTS-5
11.  Redox regulation of soluble epoxide hydrolase by 15-deoxy-Δ-prostaglandin J2 controls coronary hypoxic vasodilation 
Circulation Research  2010;108(3):324-334.
15-deoxy-Δ-prostaglandin J2 (15d-PGJ2) is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative post-translational modifications that modulate protein and tissue function.
To investigate the role of oxidative protein modifications in 15d-PGJ2-mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion.
Methods and Results
Proteomic screening with biotinylated 15d-PGJ2 identified novel vascular targets to which it adducts, most notably soluble Epoxide Hydrolase (sEH). 15d-PGJ2 inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic centre of the hydrolase. Indeed a Cys521Ser sEH ‘redox-dead’ mutant was resistant to 15d-PGJ2-induced hydrolase inhibition.15d-PGJ2 dilated coronary vessels and a role for hydrolase inhibition was supported by two structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ2 and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids (EETs) consistent with their vasodilatory actions. Indeed 14,15 EET alone induced relaxation and 15d-PGJ2-mediated vasodilation was blocked by the EET receptor antagonist 14,15-EEZE. Additionally the coronary vasculature of sEH null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ2. Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ2 adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition sEH null mice failed to vasodilate during hypoxia.
This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation.
PMCID: PMC3259859  PMID: 21164107
15-deoxy prostaglandin J2; soluble Epoxide Hydrolase; redox signaling; hypoxia
12.  Profiling of circulating microRNAs: from single biomarkers to re-wired networks 
Cardiovascular Research  2011;93(4):555-562.
The recent discovery that microRNAs (miRNAs) are present in the circulation sparked interest in their use as potential biomarkers. In this review, we will summarize the latest findings on circulating miRNAs and cardiovascular disease but also discuss analytical challenges. While research on circulating miRNAs is still in its infancy, high analytical standards in statistics and study design are a prerequisite to obtain robust data and avoid repeating the mistakes of the early genetic association studies. Otherwise, studies tend to get published because of their novelty despite low numbers, poorly matched cases and controls and no multivariate adjustment for conventional risk factors. Research on circulating miRNAs can only progress by bringing more statistical rigour to bear in this field and by evaluating changes of individual miRNAs in the context of the overall miRNA network. Such miRNA signatures may have better diagnostic and prognostic value.
PMCID: PMC3291086  PMID: 22028337
MicroRNA; Cardiovascular disease; Diabetes; Atherosclerosis; Systems biology
13.  Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome 
A transgenic mouse model for conditional induction of long-term hibernation via myocardium-specific expression of a VEGF-sequestering soluble receptor allowed the dissection of the hibernation process into an initiation and a maintenance phase. The hypoxic initiation phase was characterized by peak levels of K(ATP) channel and glucose transporter 1 (GLUT1) expression. Glibenclamide, an inhibitor of K(ATP) channels, blocked GLUT1 induction. In the maintenance phase, tissue hypoxia and GLUT1 expression were reduced. Thus, we employed a combined “-omics” approach to resolve this cardioprotective adaptation process. Unguided bioinformatics analysis on the transcriptomic, proteomic and metabolomic datasets confirmed that anaerobic glycolysis was affected and that the observed enzymatic changes in cardiac metabolism were directly linked to hypoxia-inducible factor (HIF)-1 activation. Although metabolite concentrations were kept relatively constant, the combination of the proteomic and transcriptomic dataset improved the statistical confidence of the pathway analysis by 2 orders of magnitude. Importantly, proteomics revealed a reduced phosphorylation state of myosin light chain 2 and cardiac troponin I within the contractile apparatus of hibernating hearts in the absence of changes in protein abundance. Our study demonstrates how combining different “-omics” datasets aids in the identification of key biological pathways: chronic hypoxia resulted in a pronounced adaptive response at the transcript and the protein level to keep metabolite levels steady. This preservation of metabolic homeostasis is likely to contribute to the long-term survival of the hibernating myocardium.
Graphical Abstract
Research Highlights
► The hibernation process was dissected into an initiation and a maintenance phase. ► Glibenclamide, an inhibitor of K(ATP) channels, blocked GLUT1 induction. ► The maintenance phase was characterized by attenuated tissue hypoxia. ► Phosphorylation of myosin light chain 2 and cardiac troponin I was reduced. ► Combining of proteomics and transcriptomics improved the bioinformatic pathway analysis.
PMCID: PMC3107937  PMID: 21354174
DIGE, difference in-gel electrophoresis; 2-DE, two-dimensional gel electrophoresis; 1H-NMR, proton nuclear magnetic resonance spectroscopy; LC-MS/MS, liquid chromatography tandem mass spectrometry; Hibernation; Hypoxia; Metabolomics; Myocardium; Proteomics
14.  Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas 
BMC Cancer  2011;11:198.
HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target.
Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity.
HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours.
Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.
PMCID: PMC3123325  PMID: 21612605
HIF-1β; deficiency; Hepa-1 tumours; glycolytic enzymes; glucose uptake; PFK activation; AMP/ATP ratio
15.  Extracellular Matrix Composition and Remodeling in Human Abdominal Aortic Aneurysms: A Proteomics Approach* 
Molecular & Cellular Proteomics : MCP  2011;10(8):M111.008128.
Abdominal aortic aneurysms (AAA) are characterized by pathological remodeling of the aortic extracellular matrix (ECM). However, besides the well-characterized elastolysis and collagenolysis little is known about changes in other ECM proteins. Previous proteomics studies on AAA focused on cellular changes without emphasis on the ECM. In the present study, ECM proteins and their degradation products were selectively extracted from aneurysmal and control aortas using a solubility-based subfractionation methodology and analyzed by gel-liquid chromatography-tandem MS and label-free quantitation. The proteomics analysis revealed novel changes in the ECM of AAA, including increased expression as well as degradation of collagen XII, thrombospondin 2, aortic carboxypeptidase-like protein, periostin, fibronectin and tenascin. Proteomics also confirmed the accumulation of macrophage metalloelastase (MMP-12). Incubation of control aortic tissue with recombinant MMP-12 resulted in the extensive fragmentation of these glycoproteins, most of which are novel substrates of MMP-12. In conclusion, our proteomics methodology allowed the first detailed analysis of the ECM in AAA and identified markers of pathological ECM remodeling related to MMP-12 activity.
PMCID: PMC3149094  PMID: 21593211
16.  Proteomics Characterization of Extracellular Space Components in the Human Aorta* 
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.
PMCID: PMC2938114  PMID: 20551380
17.  Proteomics Analysis of the Cardiac Myofilament Subproteome Reveals Dynamic Alterations in Phosphatase Subunit Distribution* 
Myofilament proteins are responsible for cardiac contraction. The myofilament subproteome, however, has not been comprehensively analyzed thus far. In the present study, cardiomyocytes were isolated from rodent hearts and stimulated with endothelin-1 and isoproterenol, potent inducers of myofilament protein phosphorylation. Subsequently, cardiomyocytes were “skinned,” and the myofilament subproteome was analyzed using a high mass accuracy ion trap tandem mass spectrometer (LTQ Orbitrap XL) equipped with electron transfer dissociation. As expected, a small number of myofilament proteins constituted the majority of the total protein mass with several known phosphorylation sites confirmed by electron transfer dissociation. More than 600 additional proteins were identified in the cardiac myofilament subproteome, including kinases and phosphatase subunits. The proteomic comparison of myofilaments from control and treated cardiomyocytes suggested that isoproterenol treatment altered the subcellular localization of protein phosphatase 2A regulatory subunit B56α. Immunoblot analysis of myocyte fractions confirmed that β-adrenergic stimulation by isoproterenol decreased the B56α content of the myofilament fraction in the absence of significant changes for the myosin phosphatase target subunit isoforms 1 and 2 (MYPT1 and MYPT2). Furthermore, immunolabeling and confocal microscopy revealed the spatial redistribution of these proteins with a loss of B56α from Z-disc and M-band regions but increased association of MYPT1/2 with A-band regions of the sarcomere following β-adrenergic stimulation. In summary, we present the first comprehensive proteomics data set of skinned cardiomyocytes and demonstrate the potential of proteomics to unravel dynamic changes in protein composition that may contribute to the neurohormonal regulation of myofilament contraction.
PMCID: PMC2849712  PMID: 20037178
18.  Exacerbated vein graft arteriosclerosis in protein kinase Cδ–null mice 
Journal of Clinical Investigation  2001;108(10):1505-1512.
Smooth muscle cell (SMC) accumulation is a key event in the development of atherosclerosis, including vein bypass graft arteriosclerosis. Because members of the protein kinase C (PKC) family signal cells to undergo proliferation, differentiation, or apoptosis, we generated PKCδ knockout mice and performed vein bypass grafts on these animals. PKCδ–/– mice developed normally and were fertile. Vein segments from PKCδ–/– mice isografted to carotid arteries of recipient mice of either genotype led to a more severe arteriosclerosis than was seen with PKCδ+/+ vein grafts. Arteriosclerotic lesions in PKCδ–/– mice showed a significantly higher number of SMCs than were found in wild-type animals; this was correlated with decreased SMC death in lesions of PKCδ–/– mice. SMCs derived from PKCδ–/– aortae were resistant to cell death induced by any of several stimuli, but they were similar to wild-type SMCs with respect to mitogen-stimulated cell proliferation in vitro. Furthermore, pro-apoptotic treatments led to diminished caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and cytochrome c release in PKCδ–/– relative to wild-type SMCs, suggesting that their apoptotic resistance involves the loss of free radical generation and mitochondrial dysfunction in response to stress stimuli. Our data indicate that PKCδ maintains SMC homeostasis and that its function in the vessel wall per se is crucial in the development of vein graft arteriosclerosis.
PMCID: PMC209416  PMID: 11714742

Results 1-18 (18)