PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy 
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, increased ventricular stiffness and impaired diastolic filling. We investigated to what extent myocardial functional defects can be explained by alterations in the passive and active properties of human cardiac myofibrils. Skinned ventricular myocytes were prepared from patients with obstructive HCM (two patients with MYBPC3 mutations, one with a MYH7 mutation, and three with no mutation in either gene) and from four donors. Passive stiffness, viscous properties, and titin isoform expression were similar in HCM myocytes and donor myocytes. Maximal Ca2+-activated force was much lower in HCM myocytes (14 ± 1 kN/m2) than in donor myocytes (23 ± 3 kN/m2; P < 0.01), though cross-bridge kinetics (ktr) during maximal Ca2+ activation were 10% faster in HCM myocytes. Myofibrillar Ca2+ sensitivity in HCM myocytes (pCa50 = 6.40 ± 0.05) was higher than for donor myocytes (pCa50 = 6.09 ± 0.02; P < 0.001) and was associated with reduced phosphorylation of troponin-I (ser-23/24) and MyBP-C (ser-282) in HCM myocytes. These characteristics were common to all six HCM patients and may therefore represent a secondary consequence of the known and unknown underlying genetic variants. Some HCM patients did however exhibit an altered relationship between force and cross-bridge kinetics at submaximal Ca2+ concentrations, which may reflect the primary mutation. We conclude that the passive viscoelastic properties of the myocytes are unlikely to account for the increased stiffness of the HCM ventricle. However, the low maximum Ca2+-activated force and high Ca2+ sensitivity of the myofilaments are likely to contribute substantially to any systolic and diastolic dysfunction, respectively, in hearts of HCM patients.
Research Highlights
► The passive stiffness of skinned HCM cardiac myocytes was similar to that of normal (donor) myocytes. ► Maximum Ca-activated force production was reduced by 40% in HCM vs donor myocytes. ► This loss of force could contribute to systolic dysfunction in HCM hearts. ► Myofibrillar Ca sensitivity was higher in HCM than in donor myocytes. ► The enhanced Ca sensitivity could compensate for the smaller maximum force but would tend to cause diastolic dysfunction. ► These characteristics were common to all HCM patients studied, suggesting the changes were secondary consequence of the underlying genetic variants.
doi:10.1016/j.yjmcc.2010.06.006
PMCID: PMC2954357  PMID: 20615414
Hypertrophic cardiomyopathy; Skinned cardiac myocytes; Viscoelasticity; Ca2+ sensitivity; Cross-bridge kinetics
2.  The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy 
Cardiovascular Research  2008;79(3):481-491.
Aim
The aim of the study was to compare the functional and structural properties of the motor protein, myosin, and isolated myocyte contractility in heart muscle excised from hypertrophic cardiomyopathy patients by surgical myectomy with explanted failing heart and non-failing donor heart muscle.
Methods
Myosin was isolated and studied using an in vitro motility assay. The distribution of myosin light chain-1 isoforms was measured by two-dimensional electrophoresis. Myosin light chain-2 phosphorylation was measured by sodium dodecyl sulphate–polyacrylamide gel electrophoresis using Pro-Q Diamond phosphoprotein stain.
Results
The fraction of actin filaments moving when powered by myectomy myosin was 21% less than with donor myosin (P = 0.006), whereas the sliding speed was not different (0.310 ± 0.034 for myectomy myosin vs. 0.305 ± 0.019 µm/s for donor myosin in six paired experiments). Failing heart myosin showed 18% reduced motility. One myectomy myosin sample produced a consistently higher sliding speed than donor heart myosin and was identified with a disease-causing heavy chain mutation (V606M). In myectomy myosin, the level of atrial light chain-1 relative to ventricular light chain-1 was 20 ± 5% compared with 11 ± 5% in donor heart myosin and the level of myosin light chain-2 phosphorylation was decreased by 30–45%. Isolated cardiomyocytes showed reduced contraction amplitude (1.61 ± 0.25 vs. 3.58 ± 0.40%) and reduced relaxation rates compared with donor myocytes (TT50% = 0.32 ± 0.09 vs. 0.17 ± 0.02 s).
Conclusion
Contractility in myectomy samples resembles the hypocontractile phenotype found in end-stage failing heart muscle irrespective of the primary stimulus, and this phenotype is not a direct effect of the hypertrophy-inducing mutation. The presence of a myosin heavy chain mutation causing hypertrophic cardiomyopathy can be predicted from a simple functional assay.
doi:10.1093/cvr/cvn094
PMCID: PMC2492731  PMID: 18411228
Contractile apparatus; Contractile function; Hypertrophy; Protein phosphorylation; Myosin; Myectomy; Hypertrophic cardiomyopathy

Results 1-2 (2)