Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development 
BMC Bioinformatics  2010;11:530.
The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation.
We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology.
Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at
PMCID: PMC3098089  PMID: 20973947
2.  Muscle Research and Gene Ontology: New standards for improved data integration 
The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community.
The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature.
The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki .
PMCID: PMC2657163  PMID: 19178689

Results 1-2 (2)