Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Remodeling of the cardiac sodium channel, Connexin43 and Plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy 
Arrhythmogenic cardiomyopathy (AC) is tightly associated with desmosomal mutations in the majority of patients. Arrhythmogenesis in AC patients is likely related to remodeling of cardiac gap junctions and increased levels of fibrosis. Recently, using experimental models, we also identified sodium channel dysfunction secondary to desmosomal dysfunction. The aim of the present study was to assess the immunoreactive signal levels of the sodium channel protein NaV1.5, as well as Connexin43 and Plakoglobin, in myocardial specimens obtained from AC patients.
Left and right ventricular free wall (LVFW/RVFW) post-mortem material was obtained from 5 AC patients and 5 age and sex-matched controls. RV septal biopsies (RVSB) were taken from another 15 AC patients. All patients fulfilled the 2010 revised Task Force Criteria for AC diagnosis. Immunohistochemical analyses were performed using antibodies against Connexin43 (Cx43), Plakoglobin, NaV1.5, Plakophilin-2 and N-Cadherin.
N-Cadherin and Desmoplakin immunoreactive signals and distribution were normal in AC patients compared to control. Plakophilin-2 signals were unaffected unless a PKP2 mutation predicting haploinsufficiency was present. Distribution was unchanged compared to control. Immunoreactive signal levels of PKG, Cx43 and NaV1.5 were disturbed in 74%, 70% and 65% of the patients, respectively.
Reduced immunoreactive signal of PKG, Cx43 and NaV1.5 at the intercalated disks can be observed in a large majority of the patients. Decreased levels of Nav1.5 might contribute to arrhythmia vulnerability and, in the future, potentially could serve as a new clinically relevant tool for risk assessment strategies.
PMCID: PMC3608196  PMID: 23178689
2.  Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy 
European Journal of Heart Failure  2012;14(11):1199-1207.
To investigate whether phospholamban gene (PLN) mutations underlie patients diagnosed with either arrhythmogenic right ventricular cardiomyopathy (ARVC) or idiopathic dilated cardiomyopathy (DCM).
Methods and results
We screened a cohort of 97 ARVC and 257 DCM unrelated index patients for PLN mutations and evaluated their clinical characteristics. PLN mutation R14del was identified in 12 (12 % ) ARVC patients and in 39 (15 % ) DCM patients. Haplotype analysis revealed a common founder, estimated to be between 575 and 825 years old. A low voltage electrocardiogram was present in 46 % of R14del carriers. Compared with R14del– DCM patients, R14del+ DCM patients more often demonstrated appropriate implantable cardioverter defibrillator discharge (47 % vs. 10 % , P < 0.001), cardiac transplantation (18 % vs. 2 % , P < 0.001), and a family history for sudden cardiac death (SCD) at < 50 years (36 % vs. 16 % , P = 0.007). We observed a similar pattern in the ARVC patients although this was not statistically significant. The average age of 26 family members who died of SCD was 37.7 years. Immunohistochemistry in available myocardial samples revealed absent/depressed plakoglobin levels at intercalated disks in five of seven (71 % ) R14del+ ARVC samples, but in only one of nine (11 % ) R14del+ DCM samples (P = 0.03).
The PLN R14del founder mutation is present in a substantial number of patients clinically diagnosed with DCM or ARVC. R14del+ patients diagnosed with DCM showed an arrhythmogenic phenotype, and SCD at young age can be the presenting symptom. These findings support the concept of ‘arrhythmogenic cardiomyopathy’.
PMCID: PMC3475434  PMID: 22820313
Arrhythmia; Arrhythmogenic cardiomyopathy; Arrhythmogenic right ventricular cardiomyopathy; Dilated cardiomyopathy; Genetics
3.  Gap Junctions and Arrhythmogenic Cardiomyopathy 
Heart Rhythm  2011;9(6):992-995.
PMCID: PMC3358518  PMID: 22100709
Circulation Research  2012;110(11):1445-1453.
Spatial heterogeneity in connexin (Cx) expression has been implicated in arrhythmogenesis.
This study was carried out to quantify the relation between the degree of heterogeneity in Cx43 expression and disturbances in electrical propagation.
Methods and Results
Cell pairs and strands composed of mixtures of Cx43-/- (Cx43KO) or GFP-expressing Cx43+/+ (WTGFP) murine ventricular myocytes were patterned using microlithographic techniques. At the interface between pairs of WTGFP and Cx43KO cells, dual voltage clamp showed a marked decrease in electrical coupling (~5% of wildtype) and voltage gating suggested the presence of mixed Cx43/Cx45 channels. Cx43 and Cx45 immunofluorescence signals were not detectable at this interface, probably because of markedly reduced gap junction size. Macroscopic propagation velocity, measured by multisite high-resolution optical mapping of transmembrane potential in strands of cells of mixed Cx43 genotype, decreased with an increasing proportion of Cx43KO cells in the strand. A marked decrease in conduction velocity was observed in strands composed of <50% wildtype cells. Propagation at the microscopic scale showed a high degree of dissociation between WTGFP and Cx43KO cells, but consistent excitation without development of propagation block.
Heterogeneous ablation of Cx43 leads to a marked decrease in propagation velocity in tissue strands composed of <50% cells with wildtype Cx43 expression and marked dissociation of excitation at the cellular level. However, the small residual electrical conductance between Cx43 and WTGFP myocytes assures excitation of Cx43-/- cells. This explains the previously reported undisturbed contractility in tissues with spatially heterogeneous downregulation of Cx43 expression.
PMCID: PMC3381798  PMID: 22518032
Cx43 genotypes; Myocardium; Cellular Coupling; Propagation
5.  Connexin43 Mutation Causes Heterogeneous Gap Junction Loss and Sudden Infant Death 
Circulation  2011;125(3):474-481.
An estimated 10-15% of sudden infant death syndrome (SIDS) may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 (Cx43) is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death.
Methods and Results
GJA1 open reading frame mutational analysis was performed using PCR, DHPLC, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole cell patch-clamp studies were performed to determine functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white male and a 3-month-old white female, respectively. Analysis of the E42K victim’s parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in over 1000 ethnic-matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation and S272P demonstrated wildtype junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss-of-function not rescued by wildtype. Moreover, the E42K victim cardiac tissue demonstrated a mosaic immunostaining pattern for Cx43 protein.
This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-Cx43 demonstrated a trafficking-independent reduction in junctional coupling in vitro as well as demonstrating a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of Cx43-associated sudden death.
PMCID: PMC3332541  PMID: 22179534
arrhythmia; connexins; death; sudden; electrophysiology; genetics
6.  Altered Desmosomal Proteins in Granulomatous Myocarditis and Potential Pathogenic Links to Arrhythmogenic Right Ventricular Cardiomyopathy 
Immunoreactive signal for the desmosomal protein plakoglobin (γ-catenin) is reduced at cardiac intercalated disks in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a highly arrhythmogenic condition caused by mutations in genes encoding desmosomal proteins. Previously, we observed a “false positive” case in which plakoglobin signal was reduced in a patient initially thought to have ARVC but who actually had cardiac sarcoidosis. Sarcoidosis can masquerade clinically as ARVC, but has not previously been associated with altered desmosomal proteins.
Methods and Results
We observed marked reduction in immunoreactive signal for plakoglobin at cardiac myocyte junctions in patients with sarcoidosis and giant cell myocarditis, both highly arrhythmogenic forms of myocarditis associated with granulomatous inflammation. In contrast, plakoglobin signal was not depressed in lymphocytic (non-granulomatous) myocarditis. To determine whether cytokines might promote dislocation of plakoglobin from desmosomes, we incubated cultures of neonatal rat ventricular myocytes with selected inflammatory mediators. Brief exposure to low concentrations of IL-17, TNFα and IL-6, cytokines implicated in granulomatous myocarditis, caused translocation of plakoglobin from cell-cell junctions to intracellular sites, whereas other potent cytokines implicated in non-granulomatous myocarditis had no effect, even at much high concentrations. We also observed myocardial expression of IL-17 and TNFα, and elevated serum levels of inflammatory mediators including IL-6R, IL-8, MCP1 and MIP1β in ARVC patients (all p<0.0001 compared with controls).
These results suggest novel disease mechanisms involving desmosomal proteins in granulomatous myocarditis and implicate cytokines, perhaps derived in part from the myocardium, in disruption of desmosomal proteins and arrhythmogenesis in ARVC.
PMCID: PMC3203520  PMID: 21859801
plakoglobin; desmosome; sarcoidosis; giant cell myocarditis; cytokines
7.  Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study 
European Heart Journal  2012;33(15):1942-1953.
Anecdotal observations suggest that sub-clinical electrophysiological manifestations of arrhythmogenic right ventricular cardiomyopathy (ARVC) develop before detectable structural changes ensue on cardiac imaging. To test this hypothesis, we investigated a murine model with conditional cardiac genetic deletion of one desmoplakin allele (DSP ±) and compared the findings to patients with non-diagnostic features of ARVC who carried mutations in desmoplakin.
Methods and results
Murine: the DSP (±) mice underwent electrophysiological, echocardiographic, and immunohistochemical studies. They had normal echocardiograms but delayed conduction and inducible ventricular tachycardia associated with mislocalization and reduced intercalated disc expression of Cx43. Sodium current density and myocardial histology were normal at 2 months of age. Human: ten patients with heterozygous mutations in DSP without overt structural heart disease (DSP+) and 12 controls with supraventricular tachycardia were studied by high-density electrophysiological mapping of the right ventricle. Using a standard S1–S2 protocol, restitution curves of local conduction and repolarization parameters were constructed. Significantly greater mean increases in delay were identified particularly in the outflow tract vs. controls (P< 0.01) coupled with more uniform wavefront progression. The odds of a segment with a maximal activation–repolarization interval restitution slope >1 was 99% higher (95% CI: 13%; 351%, P= 0.017) in DSP+ vs. controls. Immunostaining revealed Cx43 mislocalization and variable Na channel distribution.
Desmoplakin disease causes connexin mislocalization in the mouse and man preceding any overt histological abnormalities resulting in significant alterations in conduction–repolarization kinetics prior to morphological changes detectable on conventional cardiac imaging. Haploinsufficiency of desmoplakin is sufficient to cause significant Cx43 mislocalization. Changes in sodium current density and histological abnormalities may contribute to a worsening phenotype or disease but are not necessary to generate an arrhythmogenic substrate. This has important implications for the earlier diagnosis of ARVC and risk stratification.
PMCID: PMC3409421  PMID: 22240500
Arrhythmia; Conduction; ARVC; Repolarization; Desmosome; Desmoplakin
8.  The Role of Endomyocardial Biopsy in ARVC: Looking Beyond Histology in Search of New Diagnostic Markers 
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by a high incidence of ventricular tachyarrhythmias and sudden cardiac death that appear early in the natural history of the disease and may precede significant ventricular remodeling. The classical pathology of ARVC is degeneration of right ventricular free wall myocardium and its replacement by fat and fibrous tissue. The clinical presentation may be highly variable, however, and genetic penetrance is typically low which makes definitive diagnosis difficult, especially in early stages of the disease. Endomyocardial biopsy (EMB) has not been used widely in the diagnosis of ARVC, in part because pathological changes are usually most conspicuous in the epicardium of the right ventricular free wall and tend to spare the endocardium and interventricular septum. Thus, diagnostic pathological features of ARVC are often not seen in conventional septal biopsies. Diagnostic yield may be increased by sampling the RV free wall or by using 3-dimensional electroanatomic voltage mapping to identify affected areas, but these approaches can carry increased risk and require specialized equipment and experience. Moreover, diagnostic pathological changes may not be apparent in early disease despite an increased risk of arrhythmias and sudden death. This review considers the role of EMB in the diagnosis of ARVC and highlights recent advances in identifying potential tissue biomarkers that arise early in the disease process and occur diffusely throughout the myocardium. Analysis of conventional EMB using such biomarkers could improve diagnostic sensitivity and accuracy but widespread clinical application of this approach requires further validation.
PMCID: PMC3058333  PMID: 21235662
arrhythmogenic right ventricular cardiomyopathy; endomyocardial biopsy; intercalated disks; desmosomes; plakoglobin
9.  A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions 
Heart Rhythm  2011;8(5):711-718.
Cellular adhesion mediated by cardiac desmosomes is a prerequisite for proper electric propagation mediated by gap junctions in the myocardium. However, the molecular principles underlying this interdependence are not fully understood.
The purpose of this study was to determine potential causes of right ventricular conduction abnormalities in a patient with borderline diagnosis of arrhythmogenic right ventricular cardiomyopathy.
To assess molecular changes, the patient's myocardial tissue was analyzed for altered desmosomal and gap junction (connexin43) protein levels and localization. In vitro functional studies were performed to characterize the consequences of the desmosomal mutations.
Loss of plakoglobin signal was evident at the cell junctions despite expression of the protein at control levels. Although the distribution of connexin43 was not altered, total protein levels were reduced and changes in phosphorylation were observed. The truncation mutant in desmocollin-2a is deficient in binding plakoglobin. Moreover, the ability of desmocollin-2a to directly interact with connexin43 was abolished by the mutation. No pathogenic potential of the desmoglein-2 missense change was identified.
The observed abnormalities in gap junction protein expression and phosphorylation, which precede an overt cardiac phenotype, likely are responsible for slow myocardial conduction in this patient. At the molecular level, altered binding properties of the desmocollin-2a mutant may contribute to the changes in connexin43. In particular, the newly identified interaction between the desmocollin-2a isoform and connexin43 provides novel insights into the molecular link between desmosomes and gap junctions.
PMCID: PMC3085091  PMID: 21220045
Cardiomyopathy; Conduction; Connexin43; Desmocollin-2; Desmoglein-2; Desmosome; Functional studies; Gap junction; Mutation; Plakoglobin; ARVC, arrhythmogenic right ventricular cardiomyopathy; Cx43, connexin43; DAPI, 4′,6-diamidino-2-phenylindole; DSC2, desmocollin-2; DSG2, desmoglein-2; DSP, desmoplakin; GFP, green fluorescent protein; GST, glutathione-S-transferase; ICS, intracellular cadherin segment; PG, plakoglobin; PKP2, plakophilin-2; RV, right ventricle; YFP, yellow fluorescent protein
10.  Arrhythmogenic right ventricular cardiomyopathy/dysplasia on the basis of the revised diagnostic criteria in affected families with desmosomal mutations 
European Heart Journal  2011;32(9):1097-1104.
To evaluate arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) in affected families with desmosome mutations on the basis of the recently revised Task Force Criteria (TFC).
Methods and results
One hundred and three consecutive carriers of pathogenic desmosome mutations and 102 mutation-negative relatives belonging to 22 families with dominant and 14 families with recessive ARVC/D were evaluated according to the original and revised TFC. Serial cardiac assessment with 12-lead, signal-averaged, and 24 h ambulatory ECG and two-dimensional echocardiography was performed. Clinical events and outcome were prospectively analysed up to 24 years (median 4 years). With the revised criteria, 16 carriers were newly diagnosed on the basis of ECG abnormalities in 100%, ventricular arrhythmias in 79%, and functional/structural alterations in 31%, increasing diagnostic sensitivity from 57 to 71% (P = 0.001). Task Force Criteria specificity improved from 92 to 99% (P = 0.016). In dominant mutation carriers, penetrance changed significantly (61 vs. 42%, P = 0.001); no changes were observed in recessive homozygous carriers (97 vs. 97%, P = 1.00). Affected carriers according to the revised TFC (n = 73) had 12-lead ECG abnormalities in 96%, ventricular arrhythmias in 91%, and functional/structural alterations fulfilling echocardiographic criteria in 76%. Cumulative and event-free survival did not differ significantly between dominant and recessive affected carriers, being at 78.6 vs. 76 and 51.7 vs. 55.4%, respectively, by the age of 40 years.
Revised TFC increased diagnostic sensitivity particularly in dominant ARVC/D. Serial family evaluation may rely on electrocardiography which seems to have the best diagnostic utility particularly in early disease that is not detectable by two-dimensional echocardiography.
PMCID: PMC3086899  PMID: 21345848
Cardiomyopathy; Arrhythmogenic right ventricular cardiomyopathy/dysplasia; Diagnostic criteria; Desmosome mutations
11.  Mechanistic insights into arrhythmogenic right ventricular cardiomyopathy caused by desmocollin-2 mutations 
Cardiovascular Research  2010;90(1):77-87.
Recent immunohistochemical studies observed the loss of plakoglobin (PG) from the intercalated disc (ID) as a hallmark of arrhythmogenic right ventricular cardiomyopathy (ARVC), suggesting a final common pathway for this disease. However, the underlying molecular processes are poorly understood.
Methods and results
We have identified novel mutations in the desmosomal cadherin desmocollin 2 (DSC2 R203C, L229X, T275M, and G371fsX378). The two missense mutations (DSC2 R203C and T275M) have been functionally characterized, together with a previously reported frameshift variant (DSC2 A897fsX900), to examine their pathogenic potential towards PG's functions at the ID. The three mutant proteins were transiently expressed in various cellular systems and assayed for expression, processing, localization, and binding to other desmosomal components in comparison to wild-type DSC2a protein. The two missense mutations showed defects in proteolytic cleavage, a process which is required for the functional activation of mature cadherins. In both cases, this is thought to cause a reduction of functional DSC2 at the desmosomes in cardiac cells. In contrast, the frameshift variant was incorporated into cardiac desmosomes; however, it showed reduced binding to PG.
Despite different modes of action, for all three variants, the reduced ability to provide a ligand for PG at the desmosomes was observed. This is in agreement with the reduced intensity of PG at these structures observed in ARVC patients.
PMCID: PMC3058729  PMID: 21062920
Arrhythmogenic right ventricular cardiomyopathy; Desmocollin-2; Desmosome; Functional studies; Mutation
12.  Novel missense mutations in exon 15 of desmoglein-2: Role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? 
Heart Rhythm  2010;7(10):1446-1453.
The diagnosis of arrhythmogenic right ventricular cardiomyopathy can be challenging. Disease-causing mutations in desmosomal genes have been identified. A novel diagnostic feature, loss of immunoreactivity for plakoglobin from the intercalated disks, recently was proposed.
The purpose of this study was to identify two novel mutations in the intracellular cadherin segment of desmoglein-2 (G812S and C813R in exon 15). Co-segregation of the G812S mutation with disease expression was established in a large Caucasian family. Endomyocardial biopsies of two individuals showed reduced plakoglobin signal at the intercalated disk.
To understand the pathologic changes occurring in the diseased myocardium, functional studies on three mutations in exon 15 of desmoglein-2 (G812C, G812S, C813R) were performed.
Localization studies failed to detect any differences in targeting or stability of the mutant proteins, suggesting that they act via a dominant negative mechanism. Binding assays were performed to probe for altered binding affinities toward other desmosomal proteins, such as plakoglobin and plakophilin-2. Although no differences were observed for the mutated proteins in comparison to wild-type desmoglein-2, binding to plakophilin-2 depended on the expression system (i.e., bacterial vs mammalian protein expression). In addition, abnormal migration of the C813R mutant protein was observed in gel electrophoresis.
Loss of plakoglobin immunoreactivity from the intercalated disks appears to be the endpoint of complex pathologic changes, and our functional data suggest that yet unknown posttranslational modifications of desmoglein-2 might be involved.
PMCID: PMC2994644  PMID: 20708101
Arrhythmogenic right ventricular cardiomyopathy; Desmoglein-2; Desmosome; Genetics; Missense mutation; Plakophilin-2; ARVC, arrhythmogenic right ventricular cardiomyopathy; Cx43, connexin43; DSC2, desmocollin-2; DSG2, desmoglein-2; DSP, desmoplakin; GFP, green fluorescent protein; GST, glutathione-S-transferase; ICS, intracellular cadherin segment; PG, plakoglobin; PKP2, plakophilin-2; RV, right ventricle
13.  Prolonged RV Endocardial Activation Duration: A Novel Marker of Arrhythmogenic Right Ventricular Dysplasia/ /Cardiomyopathy 
Parietal block, defined as intra right ventricular (RV) conduction slowing is a major diagnostic criterion for ARVD/C.
We evaluated the utility of total RV endocardial activation duration (EAD) measured by 3D electroanatomic mapping during sinus rhythm in the diagnosis of ARVD/C.
25 consecutive patients with frequent LBBB morphology PVCs who underwent electroanatomic mapping as a part of the evaluation for ARVD/C were included in the study. All patients were evaluated using standard protocol that included, ECG, signal averaged ECG, Holter, Echocardiography, and MRI. Invasive testing was performed as indicated. Total RV EAD was measured as the time interval between the onset of RV activation to the latest activated region in the RV.
Mean age of the study subjects was 38±11 and 32% were men. 14 subjects were diagnosed as ARVD/C using task force criteria and the remainder had idiopathic VT. While the surface QRS durations were similar, the total RV EAD was significantly prolonged in ARVD/C compared with idiopathic VT (83.9±10 msec vs. 50.8±7 msec, p<0.001). None of the idiopathic VT subjects had RV EAD of > 65 msec. RV EAD also showed significant negative correlation with RV ejection fraction.
Total RV EAD obtained by 3D electroanatomic mapping is a sensitive marker of intra RV conduction delay in ARVD/C and a total RV EAD of >65 msec accurately differentiates ARVD/C from idiopathic VT.
PMCID: PMC2778730  PMID: 19419906
14.  Disparate Effects of Different Mutations in Plakoglobin on Cell Mechanical Behavior 
Cell motility and the cytoskeleton  2008;65(12):964-978.
Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis of heart and skin diseases. This has led to the hypothesis that defective cell-cell adhesion is the underlying cause of injury in tissues that repeatedly bear high mechanical loads. In this study, we examined the effects of two different mutations in plakoglobin on cell migration, stiffness, and adhesion. One is a C-terminal mutation causing Naxos disease, a recessive syndrome of arrhythmogenic right ventricular cardiomyopathy (ARVC) and abnormal skin and hair. The other is an N-terminal mutation causing dominant inheritance of ARVC without cutaneous abnormalities. To assess the effects of plakoglobin mutations on a broad range of cell mechanical behavior, we characterized a model system consisting of stably transfected HEK cells which are particularly well suited for analyses of cell migration and adhesion. Both mutations increased the speed of wound healing which appeared to be related to increased cell motility rather than increased cell proliferation. However, the C-terminal mutation led to dramatically decreased cell-cell adhesion, whereas the N-terminal mutation caused a decrease in cell stiffness. These results indicate that different mutations in plakoglobin have markedly disparate effects on cell mechanical behavior, suggesting complex biomechanical roles for this protein.
PMCID: PMC2650236  PMID: 18937352
cell mechanics; cell adhesion; junctional proteins

Results 1-14 (14)