PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (42)
 

Clipboard (0)
None

Select a Filter Below

Authors
more »
Year of Publication
Document Types
1.  GWAS in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture 
OBJECTIVES
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. Our aim was to perform the first genome-wide association study on individuals from the Americas enriched for Native American heritage.
MATERIALS and METHODS
We analyzed 3,710 individuals from four countries of Latin America and the Unites States diagnosed with SLE and healthy controls. Samples were genotyped with the HumanOmni1 BeadChip. Data of out-of-study controls was obtained for the HumanOmni2.5. Statistical analyses were performed using SNPTEST and SNPGWA. Data was adjusted for genomic control and FDR. Imputation was done using IMPUTE2, and HiBAG for classical HLA alleles.
RESULTS
The IRF5-TNPO3 region showed the strongest association and largest odds ratio (OR) (rs10488631, Pgcadj = 2.61×10−29, OR = 2.12, 95% CI: 1.88–2.39) followed by the HLA class II on the DQA2-DQB1 loci (rs9275572, Pgcadj = 1.11 × 10−16, OR = 1.62, 95% CI: 1.46–1.80; rs9271366, Pgcadj=6.46 × 10−12, OR = 2.06, 95% CI: 1.71–2.50). Other known SLE loci associated were ITGAM, STAT4, TNIP1, NCF2 and IRAK1. We identified a novel locus on 10q24.33 (rs4917385, Pgcadj =1.4×10−8) with a eQTL effect (Peqtl=8.0 × 10−37 at USMG5/miR1307), and describe novel loci. We corroborate SLE-risk loci previously identified in European and Asians. Local ancestry estimation showed that HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection.
CONCLUSIONS
Our results show the insight gained by studying admixed populations to delineate the genetic architecture that underlies autoimmune and complex diseases.
doi:10.1002/art.39504
PMCID: PMC4829354  PMID: 26606652
2.  Genetic Variants Associated With Quantitative Glucose Homeostasis Traits Translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium 
Diabetes  2014;64(5):1853-1866.
Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10−8) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D.
doi:10.2337/db14-0732
PMCID: PMC4407862  PMID: 25524916
3.  Empirical Characteristics of Family-Based Linkage to a Complex Trait: the ADIPOQ Region and Adiponectin Levels 
Human genetics  2014;134(2):203-213.
We previously identified a low frequency (1.1%) coding variant (G45R; rs200573126) in the adiponectin gene (ADIPOQ) which was the basis for a multipoint microsatellite linkage signal (LOD=8.2) for plasma adiponectin levels in Hispanic families. We have empirically evaluated the ability of data from targeted common variants, exome chip genotyping, and genome-wide association study (GWAS) data to detect linkage and association to adiponectin protein levels at this locus. Simple two-point linkage and association analyses were performed in 88 Hispanic families (1150 individuals) using 10,958 SNPs on chromosome 3. Approaches were compared for their ability to map the functional variant, G45R, which was strongly linked (two-point LOD=20.98) and powerfully associated (p-value=8.1×10−50). Over 450 SNPs within a broad 61 Mb interval around rs200573126 showed nominal evidence of linkage (LOD>3) but only four other SNPs in this region were associated with p-values<1.0×10−4. When G45R was accounted for, the maximum LOD score across the interval dropped to 4.39 and the best p-value was 1.1×10−5. Linked and/or associated variants ranged in frequency (0.0018 to 0.50) and type (coding, non-coding) and had little detectable linkage disequilibrium with rs200573126 (r2<0.20). In addition, the two-point linkage approach empirically outperformed multipoint microsatellite and multipoint SNP analysis. In the absence of data for rs200573126, family-based linkage analysis using a moderately dense SNP dataset, including both common and low frequency variants, resulted in stronger evidence for an adiponectin locus than association data alone. Thus, linkage analysis can be a useful tool to facilitate identification of high impact genetic variants.
doi:10.1007/s00439-014-1511-8
PMCID: PMC4293344  PMID: 25447270
4.  Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA 
Annals of the Rheumatic Diseases  2014;75(1):242-252.
Objectives
Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
Methods
Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR.
Results
The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR.
Conclusions
These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
doi:10.1136/annrheumdis-2014-205584
PMCID: PMC4717392  PMID: 25180293
Systemic Lupus Erythematosus; Autoantibodies; Gene Polymorphism; B cells
5.  A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS) 
PLoS ONE  2015;10(11):e0134649.
Obesity is growing epidemic affecting 35% of adults in the United States. Previous genome-wide association studies (GWAS) have identified numerous loci associated with obesity. However, the majority of studies have been completed in Caucasians focusing on total body measures of adiposity. Here we report the results from genome-wide and exome chip association studies focusing on total body measures of adiposity including body mass index (BMI), percent body fat (PBF) and measures of fat deposition including waist circumference (WAIST), waist-hip ratio (WHR), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) in Hispanic Americans (nmax = 1263) from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Five SNPs from two novel loci attained genome-wide significance (P<5.00x10-8) in IRASFS. A missense SNP in the isocitrate dehydrogenase 1 gene (IDH1) was associated with WAIST (rs34218846, MAF = 6.8%, PDOM = 1.62x10-8). This protein is postulated to play an important role in fat and cholesterol biosynthesis as demonstrated in cell and knock-out animal models. Four correlated intronic SNPs in the Zinc finger, GRF-type containing 1 gene (ZGRF1; SNP rs1471880, MAF = 48.1%, PDOM = 1.00x10-8) were strongly associated with WHR. The exact biological function of ZGRF1 and the connection with adiposity remains unclear. SNPs with p-values less than 5.00x10-6 from IRASFS were selected for replication. Meta-analysis was computed across seven independent Hispanic-American cohorts (nmax = 4156) and the strongest signal was rs1471880 (PDOM = 8.38x10-6) in ZGRF1 with WAIST. In conclusion, a genome-wide and exome chip association study was conducted that identified two novel loci (IDH1 and ZGRF1) associated with adiposity. While replication efforts were inconclusive, when taken together with the known biology, IDH1 and ZGRF1 warrant further evaluation.
doi:10.1371/journal.pone.0134649
PMCID: PMC4658008  PMID: 26599207
6.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
doi:10.1038/gene.2014.73
PMCID: PMC4371129  PMID: 25569266
Gene  2013;534(1):10.1016/j.gene.2013.10.035.
Context
Insulin resistance is not fully explained on a molecular level, though several genes and proteins have been tied to this defect. Knockdowns of the SEPP1 gene, which encodes the Selenoprotein P (SeP) protein, have been shown to increase insulin sensitivity in mice. SeP is a liver-derived plasma protein and a major supplier of selenium, which is a proposed insulin mimetic and antidiabetic agent.
Objective
SEPP1 single nucleotide polymorphisms (SNPs) were selected for analysis with glucometabolic measures.
Participants and Measures
1424 Hispanics from families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). Additionally, the multi-ethnic Insulin Resistance Atherosclerosis Study was used. A frequently sampled intravenous glucose tolerance test was used to obtain precise measures of acute insulin response (AIR) and the insulin sensitivity index (SI).
Design
21 SEPP1 SNPs (tagging SNPs (n=12) from HapMap, 4 coding variants and 6 SNPs in the promoter region) were genotyped and analyzed for association.
Results
Two highly correlated (r2=1) SNPs showed association with AIR (rs28919926; Cys368Arg; p=0.0028 and rs146125471; Ile293Met; p=0.0026) while rs16872779 (intronic) was associated with fasting insulin levels (p=0.0097). In the smaller IRAS Hispanic cohort, few of the associations seen in the IRASFS were replicated, but meta-analysis of IRASFS and all 3 IRAS cohorts (N= 2446) supported association of rs28919926 and rs146125471 with AIR (p=0.013 and 0.0047, respectively) as well as rs7579 with SI (p=0.047).
Conclusions
Overall, these results in a human sample are consistent with the literature suggesting a role for SEPP1 in insulin resistance.
doi:10.1016/j.gene.2013.10.035
PMCID: PMC3856675  PMID: 24161883
Acute Insulin Response (AIR); Selenium; Selenoproteins; Insulin Resistance; Fibrinogen; Hispanic Americans
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
doi:10.3389/fgene.2014.00450
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
Carbapenem resistance in Gram-negative bacteria is on the rise in the United States. A regional network was established to study microbiological and genetic determinants of clinical outcomes in hospitalized patients with carbapenem-resistant (CR) Klebsiella pneumoniae in a prospective, multicenter, observational study. To this end, predefined clinical characteristics and outcomes were recorded and K. pneumoniae isolates were analyzed for strain typing and resistance mechanism determination. In a 14-month period, 251 patients were included. While most of the patients were admitted from long-term care settings, 28% of them were admitted from home. Hospitalizations were prolonged and complicated. Nonsusceptibility to colistin and tigecycline occurred in isolates from 7 and 45% of the patients, respectively. Most of the CR K. pneumoniae isolates belonged to repetitive extragenic palindromic PCR (rep-PCR) types A and B (both sequence type 258) and carried either blaKPC-2 (48%) or blaKPC-3 (51%). One isolate tested positive for blaNDM-1, a sentinel discovery in this region. Important differences between strain types were noted; rep-PCR type B strains were associated with blaKPC-3 (odds ratio [OR], 294; 95% confidence interval [CI], 58 to 2,552; P < 0.001), gentamicin nonsusceptibility (OR, 24; 95% CI, 8.39 to 79.38; P < 0.001), amikacin susceptibility (OR, 11.0; 95% CI, 3.21 to 42.42; P < 0.001), tigecycline nonsusceptibility (OR, 5.34; 95% CI, 1.30 to 36.41; P = 0.018), a shorter length of stay (OR, 0.98; 95% CI, 0.95 to 1.00; P = 0.043), and admission from a skilled-nursing facility (OR, 3.09; 95% CI, 1.26 to 8.08; P = 0.013). Our analysis shows that (i) CR K. pneumoniae is seen primarily in the elderly long-term care population and that (ii) regional monitoring of CR K. pneumoniae reveals insights into molecular characteristics. This work highlights the crucial role of ongoing surveillance of carbapenem resistance determinants.
doi:10.1128/AAC.02636-14
PMCID: PMC4068524  PMID: 24798270
Obesity (Silver Spring, Md.)  2013;21(12):10.1002/oby.20419.
Objective
Adiponectin is an adipocytokine that has been implicated in a variety of metabolic disorders, including T2D and cardiovascular disease. Studies evaluating genetic variants in ADIPOQ have been contradictory when testing association with T2D in different ethnic groups.
Design and Methods
In this study, 18 SNPs in ADIPOQ were tested for association with plasma adiponectin levels and diabetes status. SNPs were examined in two independent African-American cohorts (nmax=1116) from the Insulin Resistance Atherosclerosis Family Study (IRASFS) and the African American-Diabetes Heart Study (AA-DHS).
Results
Five polymorphisms were nominally associated with plasma adiponectin levels in the meta-analysis (p=0.035–1.02x10−6) including a low frequency arginine to cysteine mutation (R55C) which reduced plasma adiponectin levels to <15% of the mean. Variants were then tested for association with T2D in a meta-analysis of these and the Wake Forest T2D Case-Control study (n=3233 T2D, 2645 non-T2D). Association with T2D was not observed (p≥0.08), suggesting limited influence of ADIPOQ variants on T2D risk.
Conclusions
Despite identification of variants associated with adiponectin levels, a detailed genetic analysis of ADIPOQ revealed no association with T2D risk. This puts into question the role of adiponectin in T2D pathogenesis: whether low adiponectin levels are truly causal for or rather a consequence.
doi:10.1002/oby.20419
PMCID: PMC3690163  PMID: 23512866
Genetic epidemiology  2012;37(1):13-24.
Common genetic variation frequently accounts for only a modest amount of inter-individual variation in quantitative traits and complex disease susceptibility. Circulating adiponectin, an adipocytokine implicated in metabolic disease, is a model for assessing the contribution of genetic and clinical factors to quantitative trait variation. The adiponectin locus, ADIPOQ, is the primary source of genetically-mediated variation in plasma adiponectin levels. This study sought to define the genetic architecture of ADIPOQ in the comprehensively phenotyped Hispanic (n=1151) and African American (n=574) participants from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Through resequencing and bioinformatic analysis, rare/low frequency (<5% MAF) and common variants (>5% MAF) in ADIPOQ were identified. Genetic variants and clinical variables were assessed for association with adiponectin levels and contribution to adiponectin variance in the Hispanic and African American cohorts. Clinical traits accounted for the greatest proportion of variance (POV) at 31% (p=1.16×10−47) and 47% (p=5.82×10−20), respectively. Rare/low frequency variants contributed more than common variants to variance in Hispanics: POV=18% (p= 6.40×10−15) and POV=5% (p=0.19), respectively. In African Americans, rare/low frequency and common variants both contributed approximately equally to variance: POV=6% (p=5.44×10−12) and POV=9% (P=1.44×10−10), respectively. Importantly, single low frequency alleles in each ethnic group were as important as, or more important than, common variants in explaining variation in adiponectin. Cumulatively, these clinical and ethnicity-specific genetic contributors explained half or more of the variance in Hispanic and African Americans and provide new insight into the sources of variation for this important adipocytokine.
doi:10.1002/gepi.21685
PMCID: PMC3736586  PMID: 23032297
adiponectin; proportion of variation; rare variants; common variants; clinical traits
Molecular genetics and metabolism  2012;107(4):721-728.
Context
Adiponectin is an adipocytokine associated with a variety of metabolic traits. These associations in human studies, in conjunction with functional studies in model systems, have implicated adiponectin in multiple metabolic processes.
Objective
We hypothesize that genetic variants associated with plasma adiponectin would also be associated with glucose homeostasis and adiposity phenotypes.
Design and Setting
The Insulin Resistance Atherosclerosis Family Study was designed to identify the genetic and environmental basis of insulin resistance and adiposity in the Hispanic- (n=1,424) and African-American (n=604) population.
Main Outcome Measures
High quality metabolic phenotypes, e.g. insulin sensitivity (SI), acute insulin response (AIR), disposition index (DI), fasting glucose, body mass index (BMI), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and waist circumference, were explored.
Results
Based on association analysis of more than 40 genetic polymorphisms in the adiponectin gene (ADIPOQ), we found no consistent association of ADIPOQ variants with plasma adiponectin levels and adiposity phenotypes. However, there were two promoter variants, rs17300539 and rs822387, associated with plasma adiponectin levels (P=0.0079 and 0.021, respectively) in the Hispanic-American cohort that were also associated with SI (P=0.0067 and 0.013, respectively). In contrast, there was only a single promoter SNP, rs17300539, associated with plasma adiponectin levels (P=0.0018) and fasting glucose (P=0.042) in the African-American cohort. Strikingly, high impact coding variants did not show evidence of association.
Conclusions
The lack of consistent patterns of association between variants, adiponectin levels, glucose homeostasis, and adiposity phenotypes suggests a reassessment of the influence of adiponectin in these pathways.
doi:10.1016/j.ymgme.2012.10.003
PMCID: PMC3504195  PMID: 23102667
adiponectin; single nucleotide polymorphisms; glucose homeostasis; adiposity; African Americans; Hispanic Americans
Arthritis and rheumatism  2012;64(11):3695-3705.
Objective
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins.
Methods
We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines.
Results
We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression.
Conclusion
Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
doi:10.1002/art.34642
PMCID: PMC3485412  PMID: 22833143
Background
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition, particularly among Hispanic Americans. A genetic variant in PNPLA3 (rs738409) has been identified as a strong predictor of hepatic fat content.
Aims
To confirm the association of this variant with NAFLD in two minority cohorts, Hispanic Americans and African Americans, in whom liver density was quantified by computed tomography (CT).
Methods
This analysis was conducted in the Insulin Resistance Atherosclerosis (IRAS) Family Study. Participants were recruited from the general community and included 843 Hispanic American and 371 African American adults aged 18–81 years. A single variant in PNPLA3 (rs738409) was genotyped. Liver density was calculated in Hounsfield Units from abdominal CT scans.
Results
Single nucleotide polymorphism (SNP) rs738409 was strongly associated with reduced liver density (i.e. NAFLD) in Hispanic Americans (1.18 × 10−9) and in African Americans (P = 4.99 × 10−6). The association followed an additive genetic model with the G allele conferring risk. The allele was two times more common in Hispanic Americans than in African Americans (40 vs 19%), consistent with the greater prevalence of NAFLD in Hispanic Americans (24 vs 9%). The SNP explained 4.4 and 5.6% of the variance of the adjusted liver density outcome in Hispanic Americans and African Americans, respectively.
Conclusions
We confirmed the association of a PNPLA3 variant with NAFLD in Hispanic Americans and African Americans, suggesting that PNPLA3 contributes to the variation in NAFLD across multiple ethnicities. This study adds to the growing evidence that some of the ethnic variation in NAFLD is genetic.
doi:10.1111/j.1478-3231.2010.02444.x
PMCID: PMC3703938  PMID: 21281435
African Americans; computed tomography; genetic epidemiology; hepatic steatosis; Hispanic Americans; non-alcoholic fatty liver disease; PNPLA3
Background
Genetic variants in myocardial sodium and potassium channel genes are associated with prolonged QT interval and increased risk of sudden death. It is unclear whether these genetic variants remain relevant in subjects with underlying conditions such as diabetes that are associated with prolonged QT interval.
Methods
We tested single nucleotide polymorphisms (SNPs) in five candidate genes for association with QT interval in a family-based study of subjects with type 2 diabetes mellitus (T2DM). Thirty-six previously reported SNPs were genotyped in KCNQ1, HERG, SCN5A, KCNE1, and KCNE2 in 901 European Americans from 366 families. The heart rate-corrected (QTc) durations were determined using the Marquette 12SL program. Associations between the QTc interval and the genotypes were evaluated using SOLAR adjusting for age, gender, T2DM status, and body mass index.
Results
Within KCNQ1 there was weak evidence for association between the minor allele of IVS12+14T>C and increased QTc (p=0.02). The minor allele of rs2236609 in KCNE1 trended toward significance with longer QTc (p=0.06), while the minor allele of rs1805123 in HERG trended toward significance with shorter QTc (p=0.07). However, no statistically significant associations were observed between the remaining SNPs and QTc variation.
Conclusions
We found weak evidence of association between three previously-reported SNPs and QTc interval duration. While it appears as though genetic variants in previously identified candidate genes may be associated with QT duration in subjects with diabetes, the clinical implications of these associations in diabetic subjects at high risk for sudden death remains to be determined.
doi:10.1111/j.1542-474X.2008.00276.x
PMCID: PMC3650725  PMID: 19149796
QT interval; diabetes; association study; genetics; ion channels
Annals of the rheumatic diseases  2012;72(3):437-444.
Objectives
The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE.
Methods
We fine-mapped ≥136 SNPs in a ~227kb region on Xq28, containing IRAK1, MECP2 and 7 adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15,783 case-control subjects derived from 4 different ancestral groups.
Results
Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at P<5×10−8 with consistent association in subjects with African ancestry. Of these, 6 SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all 4 ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest P value in trans-ancestral meta-analysis (Pmeta=1.3×10−27, OR=1.43), and thus was considered to be the most-likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (P=0.0012) and healthy controls (P=0.0064).
Conclusion
These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
doi:10.1136/annrheumdis-2012-201851
PMCID: PMC3567234  PMID: 22904263
Systemic Lupus Erythematosus; Gene Polymorphism; Xq28; IRAK1; MECP2
Genes and immunity  2012;13(5):380-387.
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations characterized by the development of pathogenic autoantibodies manifesting in inflammation of target organs such as the kidneys, skin and joints. Genome-wide association studies have identified genetic variants in the UBE2L3 region that are associated with SLE in subjects of European and Asian ancestry. UBE2L3 encodes an ubiquitin-conjugating enzyme, UBCH7, involved in cell proliferation and immune function. In this study, we sought to further characterize the genetic association in the region of UBE2L3 and use molecular methods to determine the functional effect of the risk haplotype. We identified significant associations between variants in the region of UBE2L3 and SLE in individuals of European and Asian ancestry that exceeded a Bonferroni corrected threshold (P < 1 × 10−4). A single risk haplotype was observed in all associated populations. Individuals harboring the risk haplotype display a significant increase in both UBE2L3 mRNA expression (P = 0.0004) and UBCH7 protein expression (P = 0.0068). The results suggest that variants carried on the SLE associated UBE2L3 risk haplotype influence autoimmunity by modulating UBCH7 expression.
doi:10.1038/gene.2012.6
PMCID: PMC3411915  PMID: 22476155
Systemic Lupus Erythematosus; UBE2L3; Multi Ethnic Association Study; UBCH7 Expression
The British journal of nutrition  2011;107(4):547-555.
Over the past 50 years, increases in dietary n-6 polyunsaturated fatty acids (PUFAs), such as linoleic acid, have been hypothesized to cause or exacerbate chronic inflammatory diseases. This study examines an individual’s innate capacity to synthesize n-6-long chain PUFAs (LC-PUFAs), with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes/metabolic syndrome. Compared to European Americans (EAm), African Americans (AfAm) exhibited markedly higher serum levels of arachidonic acid (AA) (EAm 7.9±2.1; AfAm 9.8±1.9 % of total fatty acids, mean ± sd; p<2.29×10−9) and the AA to n-6-precursor fatty acid ratio, which estimates FADS1 activity (EAm 5.4±2.2, AfAm 6.9±2.2; p=1.44×10−5). Seven single nucleotide polymorphisms (SNP) mapping to the FADS locus revealed strong association with AA, eicosapentaenoic acid (EPA) and dihomogamma-linolenic acid (DGLA) in the EAm. Importantly, EAm homozygous for the minor allele (T) had significantly lower AA levels (TT: 6.3±1.0; GG: 8.5±2.1; p=3.0×10−5) and AA/DGLA ratios (TT: 3.4±0.8; GG: 6.5±2.3; p=2.2×10−7) but higher DGLA levels (TT: 1.9±0.4; GG: 1.4±0.4; p=3.3×10−7) compared to those homozygous for the major allele (GG). Allele frequency patterns suggest that the GG genotype at rs174537 (associated with higher circulating levels of AA) is much higher in AfAm (0.81) compared to EAm (0.46). Similarly, marked differences in rs174537 genotypic frequencies were observed in HapMap populations. These data suggest that there are likely important differences in the capacity of different populations to synthesize LC-PUFAs. These differences may provide a genetic mechanism contributing to health disparities between populations of African and European descent.
doi:10.1017/S0007114511003230
PMCID: PMC3494092  PMID: 21733300
SNP; FADS; arachidonic acid synthesis
Background
Asthma is a common disease of children with a complex genetic origin. Understanding the genetic basis of asthma susceptibility will allow disease prediction and risk stratification.
Objective
We sought to identify asthma susceptibility genes in children.
Methods
A nested case-control genetic association study of children of Caucasian European ancestry from a birth cohort was conducted. Single nucleotide polymorphisms (SNPs, n=116,024) were genotyped in pools of DNA samples from cohort children with physician-diagnosed asthma (n=112) and normal controls (n=165). A genomic region containing the ATPAF1 gene was significantly associated with asthma. Additional SNPs within this region were genotyped in individual samples from the same children and in eight independent study populations consisting of Caucasian, African American, Hispanic, or other ancestries. SNPs were also genotyped or imputed in two consortia control populations. ATPAF1 expression was measured in bronchial biopsies from asthmatics and controls.
Results
Asthma was associated with a cluster of SNPs and SNP haplotypes containing the ATPAF1 gene with two SNPs achieving significance at a genome-wide level (p=2.26×10−5 to 2.2×10−8). Asthma severity was also associated with SNPs and haplotypes in the primary population. SNP and/or gene-level associations were confirmed in the four non-Hispanic populations. Haplotype associations were confirmed in the non-Hispanic populations (p=0.045 to 0.0009). ATPAF1 total RNA expression was significantly (p<0.01) higher in bronchial biopsies from asthmatics than controls.
Conclusion
Genetic variation in the ATPAF1 gene predisposes children of different ancestry to asthma.
doi:10.1016/j.jaci.2011.04.058
PMCID: PMC3185108  PMID: 21696813
asthma; ATPAF1; children; gene; genetic; genome-wide association; purinergic; respiratory; single nucleotide polymorphism; SNP
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Objective
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Results
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Conclusion
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
doi:10.1136/ard.2011.154104
PMCID: PMC3232181  PMID: 21719445
Arthritis and rheumatism  2011;63(9):2755-2763.
Objective
T cells from patients with SLE express increased amounts of PP2Ac which contribute to decreased production of IL-2. Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
Methods
We conducted a trans-ethnic study consisting of 8,695 SLE cases and 7,308 controls from four different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across the PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time PCR.
Results
A 32-kb haplotype comprised of multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans (HA), European Americans (EA) and Asians but not in African-Americans (AA). Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, EA and HA populations (pmeta=3.8×10−7, OR=1.3[1.14–1.31]). In EA, the largest ethnic dataset, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-dsDNA and anti-RNP antibodies. PPP2CA expression was approximately 2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying GG genotype (p = 0.008).
Conclusion
Our data provide the first evidence for an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in EA, HA and Asians.
doi:10.1002/art.30452
PMCID: PMC3163110  PMID: 21590681
Arthritis and rheumatism  2011;63(7):2049-2057.
Objective
The overexpression of interferon (IFN)-inducible genes is a prominent feature of SLE, serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. The genetic variations responsible for sustained activation of IFN responsive genes are unknown.
Methods
We systematically evaluated association of SLE with a total of 1,754 IFN-pathway related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We performed a three-stage design where two cohorts (total n=939 SLE cases, 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons.
Results
A total of 16,137 SNPs passed all quality control filters of which 316 demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including the transmembrane receptor CD44 (rs507230, P = 3.98×10−12), cytokine pleiotrophin (PTN) (rs919581, P = 5.38×10−04), the heat-shock DNAJA1 (rs10971259, P = 6.31×10−03), and the nuclear import protein karyopherin alpha 1 (KPNA1) (rs6810306, P = 4.91×10−02).
Conclusion
This study expands the number of candidate genes associated with SLE and highlights the potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE.
doi:10.1002/art.30356
PMCID: PMC3128183  PMID: 21437871
Arthritis and rheumatism  2011;63(6):1689-1697.
Objective
Genetic association of the IL2/IL21 region at 4q27 has been previously reported in lupus and a number of autoimmune and inflammatory diseases. Herein, using a very large cohort of lupus patients and controls, we localize this genetic effect to the IL21 gene.
Methods
We genotyped 45 tag SNPs across the IL2/IL21 locus in two large independent lupus sample sets. We studied a European-derived set consisting of 4,248 lupus patients and 3,818 healthy controls, and an African-American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 WTCCC additional control individuals was also performed. Genetic association between the genotyped markers was determined, and pair-wise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus.
Results
We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and trans-ethnic mapping, we localized the genetic effect in this locus to two SNPs in high linkage disequilibrium; rs907715 located within IL21 (OR=1.16 (1.10–1.22), P= 2.17 ×10−8), and rs6835457 located in the 3’-UTR flanking region of IL21 (OR= 1.11 (1.05–1.17), P= 9.35×10−5).
Conclusion
We have established the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, we localized this genetic association within the IL2/IL21 linkage disequilibrium block to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate in a fundamental mechanism that influences the course of a number of autoimmune disease processes.
doi:10.1002/art.30320
PMCID: PMC3106139  PMID: 21425124
Genes and Immunity  2011;13(3):232-238.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected p-value of p < 2.03 × 10−3 were observed between LN and MYH9 in EAs (N=4620), with the most pronounced association at rs2157257 (p = 4.7 × 10−4; odds ratio [OR]=1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, p = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population and presents novel insight into the potential role of MYH9 in LN in EAs.
doi:10.1038/gene.2011.82
PMCID: PMC3330160  PMID: 22189356
MYH9; APOL1; lupus nephritis; systemic lupus erythematosus; multiethnic association study
Annals of human genetics  2011;75(2):222-235.
SUMMARY
A carotid artery calcified plaque (CarCP) linkage peak on chromosome 16p (LOD 4.39 at 8.4cM) in European American (EA) families with type 2 diabetes mellitus (T2DM) from the Diabetes Heart Study (DHS) has been refined by fine-mapping and candidate genes and SNPs evaluated for association with subclinical CVD. Fine-mapping was based on 104 SNPs in 937 subjects from 315 families, including 45 SNPs in six candidate genes (CACNA1H, SEPX1, ABCA3, IL32, SOCS1, and KIAA0350). Linkage and association analyses using variance components analysis (SOLAR; adjusting for age, gender, BMI, and T2DM status) refined the original CarCP linkage into two distinct linkage regions (LOD scores: 3.89 at 6.9cM and 4.86 at 16.0cM). Evidence of linkage for coronary calcified plaque (LOD: 2.27 at 19cM) and a vascular calcification principle component (LOD: 3.71 at 16.0cM) was also observed. The strongest evidence for association with CarCP was observed with SNPs in the A2BP1 gene region (rs4337300 p=0.005) with modest evidence of association with SNPs in CACNA1H (p=0.010–0.033). Bayesian Quantitative Trait Nucleotide analysis identified a SNP, rs1358489, with either a functional effect on CarCP or in linkage disequilibrium with a functional SNP. This study refined the 16p region contributing to vascular calcification. Although the causal variants remain to be identified the results are consistent with a linkage peak which is due to multiple common variants, though rare variants cannot be excluded.
doi:10.1111/j.1469-1809.2010.00632.x
PMCID: PMC3074504  PMID: 21309755
type 2 diabetes; subclinical cardiovascular disease; fine mapping

Results 1-25 (42)