PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Generation and characterization of a new mammalian cell line continuously expressing virus-like particles of Japanese encephalitis virus for a subunit vaccine candidate 
BMC Biotechnology  2014;14:62.
Background
Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis in most Asian regions. There is no specific treatment available for Japanese encephalitis, and vaccination is the only effective way to prevent JEV infection in humans and domestic animals. The purpose of this study is to establish a new mammalian cell line stably and efficiently expressing virus-like particle of JEV for potential use of JEV subunit vaccine.
Results
We generated a new cell clone (BJ-ME cells) that stably produces a secreted form of Japanese encephalitis virus (JEV) virus-like particle (VLP). The BJ-ME cells were engineered by transfecting BHK-21 cells with a code-optimized cDNA encoding JEV prM and E protein expression plasmid. Cell line BJ-ME can stably produces a secreted form of Japanese encephalitis virus virus-like particle (JEV-VLP) which contains the JEV envelope glycoprotein (E) and membrane protein (M). The amount of JEV-VLP antigen released into the culture fluid of BJ-ME cells was as high as 15–20 μg/ml. JEV-VLP production was stable after multiple cell passages and 100% cell expression was maintained without detectable cell fusion or apoptosis. Cell culture fluid containing the JEV-VLP antigen could be harvested five to seven times continuously at intervals of 4–6 days while maintaining the culture. Mice immunized with the JEV-VLP antigen with or without adjuvant developed high titers of neutralizing antibodies and 100% protection against lethal JEV challenge.
Conclusion
These results suggest that the recombinant JEV-VLP antigen produced by the BJ-ME cell line is an effective, safe and affordable subunit Japanese encephalitis vaccine candidate, especially for domestic animals such as pig and horse.
doi:10.1186/1472-6750-14-62
PMCID: PMC4094896  PMID: 25011456
Japanese encephalitis virus; Mammalian cell line; Virus-like particle; Subunit vaccine
2.  Gene–Gene Interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(1):222-231.
Objective
Although the number of convincingly established genetic associations with systemic lupus erythematosus (SLE) has increased sharply over the last few years, refinement of these associations is required, and their potential roles in gene–gene interactions need to be further investigated. Recent genome-wide association studies (GWAS) in SLE have produced renewed interest in B cell/T cell responses and the NF-κB signaling pathway. The aim of this study was to search for possible gene–gene interactions based on identified single-nucleotide polymorphisms (SNPs), in using an approach based on the role of signaling pathways.
Methods
The SNPs in BLK, TNFSF4, TRAF1, TNFAIP3, and REL were replicated in order to evaluate genetic associations with SLE. TaqMan genotyping was conducted in 804 Chinese patients with SLE and 722 matched control subjects. A multiple logistic regression model was used to estimate the multiplicative interaction effect of the SNPs, and additive interactions were analyzed by 2 × 2 factorial designs. Data from a previously published GWAS conducted by the International Consortium on the Genetics of Systemic Lupus Erythematosus were derived for comparison and validation.
Results
Single-marker analysis validated the association of BLK rs2736340 (P = 4.25 × 10–6) as well as TNFSF4 rs2205960 (P = 2.82 × 10–5) and TNFAIP3 rs5029939 (P = 1.92 × 10–3) with SLE susceptibility in Chinese. Multiplicative interaction analysis indicated that BLK had an interactive effect with TNFSF4 in Chinese patients with SLE (P = 6.57 × 10–4). Additive interaction analysis revealed interactions between TRAF1 and TNFAIP3 in both Chinese (P = 2.18 × 10–3) and Caucasians (P = 2.86 × 10–4). In addition, multiple tendencies toward interactions were observed, and an additive effect was observed as the number of risk genotypes increased.
Conclusion
The results of this study provide evidence of the possible gene–gene interactions of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in SLE, which may represent a synergic effect of T cells and B cells through the NF-κB pathway in determining immunologic aberration.
doi:10.1002/art.33318
PMCID: PMC3994469  PMID: 21905002
3.  Ginsenosides Rb1 and Rg1 Stimulate Melanogenesis in Human Epidermal Melanocytes via PKA/CREB/MITF Signaling 
Reduced or defective melanin skin pigmentation may cause many hypopigmentation disorders and increase the risk of damage to the skin triggered by UV irradiation. Ginsenosides Rb1 and Rg1 have many molecular targets including the cAMP-response element-binding protein (CREB), which is involved in melanogenesis. This study aimed to investigate the effects of ginsenosides Rb1 and Rg1 on melanogenesis in human melanocytes and their related mechanisms. The effects of Rb1 and Rg1 on cell viability, tyrosinase activity, cellular melanin content and protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and activation of CREB in melanocytes were assessed. Results showed that Rb1 or Rg1 significantly increased cellular melanin content and tyrosinase activity in a dose-dependent manner. By contrast, the cell viability of melanocytes remained unchanged. After exposure to Rb1 or Rg1, the protein levels of tyrosinase, MITF, and phosphorylated CREB were significantly increased. Furthermore, pretreatment with the selective PKA inhibitor H-89 significantly blocked the Rb1- or Rg1-induced increase of melanin content. These findings indicated that Rb1 and Rg1 increased melanogenesis and tyrosinase activity in human melanocytes, which was associated with activation of PKA/CREB/MITF signaling. The effects and mechanisms of Rb1 or Rg1 on skin pigmentation deserve further study.
doi:10.1155/2014/892073
PMCID: PMC3988736  PMID: 24799945
4.  Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium 
Objective
With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique.
Methods
U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft.
Results
The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors.
Conclusion
The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.
doi:10.3340/jkns.2014.55.3.131
PMCID: PMC4024811  PMID: 24851147
Cancer targeting; Mouse glioma model; Optical bioluminescence imaging; Salmonella typhimurium; U87-MG
5.  SNPs in VKORC1 are Risk Factors for Systemic Lupus Erythematosus in Asians 
Arthritis and rheumatism  2013;65(1):211-215.
OBJECTIVE
The increased risk of thrombosis in systemic lupus erythematosus (SLE) may be partially explained by interrelated genetic pathways for thrombosis and SLE. In a case-control analysis, we investigated whether 33 established and novel single nucleotide polymorphisms (SNP) in 20 genes involved in hemostasis pathways that have been associated with deep venous thrombosis in the general population were risk factors for SLE development among Asians.
METHODS
Patients in the discovery cohort were enrolled in one of two North American SLE cohorts. Patients in the replication cohort were enrolled in one of four Asian or two North American cohorts. SLE cases met American College of Rheumatology classification criteria. We first genotyped 263 Asian SLE and 357 healthy Asian control individuals for 33 SNPs using Luminex multiplex technology in the discovery phase, and then used Taqman and Immunochip assays to examine 5 SNPs in up to an additional 1496 cases and 993 controls in the Replication phase. SLE patients were compared to healthy controls for association with minor alleles in allelic models. Principal components analysis was used to control for intra-Asian ancestry in an analysis of the replication cohort.
RESULTS
Two genetic variants in the gene VKORC1, rs9934438 and rs9923231, were highly significant in both the discovery and replication cohorts: OR(disc) = 2.45 (p=2×10−9), OR(rep) = 1.53 (p=5×10−6) and OR(disc) = 2.40 (p=6×10−9), OR(rep) = 1.53 (p=5×10−6), respectively. These associations were significant in the replication cohort after adjustment for intra-Asian ancestry: rs9934438 OR(adj) = 1.34 (p=0.0029) and rs9923231 OR(adj) = 1.34 (p=0.0032).
CONCLUSION
Genetic variants in VKORC1, involved in vitamin K reduction and associated with DVT, are associated with SLE development in Asians. These results suggest intersecting genetic pathways for the development of SLE and thrombosis.
doi:10.1002/art.37751
PMCID: PMC3670944  PMID: 23124848
systemic lupus erythematosus; single nucleotide polymorphisms; genetic risk factors
6.  Protection of Piglets by a Haemophilus parasuis Ghost Vaccine against Homologous Challenge 
Commercial bacterins for Glässer's disease are widely used for the prevention of this disease caused by Haemophilus parasuis; however, the protective efficacy varies depending on the strain and serovar. Bacterial ghosts (BGs) are empty bacterial envelopes that, unlike classic bacterins, suffer no denaturing steps during their production. These properties may lead to superior protection. In this study, a BG vaccine generated from the Haemophilus parasuis serovar 5 reference strain Nagasaki was prepared and used to inoculate piglets. The efficacy of the BG vaccine was evaluated by clinical, bacteriological, serological, and postmortem examinations. Inactivated bacterin (IB) and a placebo control (PC) were compared with the BG vaccine in this study. The results showed that the piglets inoculated with the BG vaccine developed higher antibody activity and higher gamma interferon and interleukin 4 levels than those vaccinated with IB or those in the PC group after primary and secondary exposure to the antigens and challenge. CD4+ T lymphocyte levels were observed to increase following secondary immunization more in the BG-vaccinated group than in the IB (P < 0.05) and PC (P < 0.05) groups. CD8+ T lymphocyte levels increased dramatically in all three groups after challenge, and the differences between groups were all significant (P < 0.05). There were fewer tissue lesions and lower bacterial loads in the tissue homogenates in the BG group after challenge. The results suggest that higher CD4+ T lymphocyte levels and both CD4+ major histocompatibility complex class II-restricted Th1-type and Th2-type immune responses in the BG group are relevant for protection.
doi:10.1128/CVI.00676-12
PMCID: PMC3675978  PMID: 23536691
7.  Pyrrolidine dithiocarbamate (PDTC) inhibits the overexpression of MCP-1 and attenuates microglial activation in the hippocampus of a pilocarpine-induced status epilepticus rat model 
The aim of this study was to investigate the effects of pyrrolidine dithiocarbamate (PDTC) on MCP-1 expression and microglial activation in the hippocampus of a rat model of pilocarpine (PILO)-induced status epilepticus (SE). Moreover, seizure susceptibility, frequency and severity as well as brain damage were analyzed and changes in behavior were recorded. Chemokine MCP-1 expression and microglial activation were detected by immunohistochemistry (IHC). Fluoro-Jade C (FJC) and NeuN staining were used for the evaluation of tissue damage. Our results showed that although SE resulted in the upregulation of MCP-1 and microglial activation in the rat hippocampus 24 h after seizure onset, pretreatment with PDTC significantly inhibited the MCP-1 overexpression and attenuated the microglial activation. These effects were accompanied by neurodegenerative amelioration. To the best of our knowledge, these findings indicated for the first time that the activation of the nuclear factor-κB (NF-κB) pathway may contribute to MCP-1 upregulation and microglial activation in the context of epilepsy. PDTC was also shown to exert anticonvulsant activity and to have a neuroprotective effect on the hippocampal CA1 and CA3 regions, potentially through attenuating microglial activation.
doi:10.3892/etm.2013.1397
PMCID: PMC3861516  PMID: 24348761
epilepsy; pilocarpine-induced status epilepticus rat model; MCP-1 (CCL2); nuclear factor-κB; pyrrolidine dithiocarbamate; hippocampus
8.  microRNA-mediated regulation of innate immune response in rheumatic diseases 
miRNAs have been shown to play essential regulatory roles in the innate immune system. They function at multiple levels to shape the innate immune response and maintain homeostasis by direct suppression of the expression of their target proteins, preferentially crucial signaling components and transcription factors. Studies in humans and in disease models have revealed that dysregulation of several miRNAs such as miR-146a and miR-155 in rheumatic diseases leads to aberrant production of and/or signaling by inflammatory cytokines and, thus, critically contributes to disease pathogenesis. In addition, the recent description of the role of certain extracellular miRNAs as innate immune agonist to induce inflammatory response would have direct relevance to rheumatic diseases.
doi:10.1186/ar4194
PMCID: PMC3672773  PMID: 23582400
9.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
doi:10.1371/journal.pgen.1003554
PMCID: PMC3715547  PMID: 23874208
10.  Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity 
European journal of immunology  2012;42(6):1500-1511.
Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β–β-catenin–Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β–β-catenin–Akt pathway.
doi:10.1002/eji.201142051
PMCID: PMC3644991  PMID: 22678904
Alveolar macrophage phagocytosis; Cell signaling pathway; Gram-negative bacterial infection; Innate immunity; Proinflammatory cytokines
11.  A genetic role for macrophage migration inhibitory factor (MIF) in adult-onset Still's disease 
Introduction
Adult-onset still's disease (AOSD) is a rare systemic inflammatory disorder in which abnormalities in inflammatory cytokines production appear to play a pathophysiological role. Our previous work has reported increased expression of macrophage migration inhibitory factor (MIF) and revealed its correlation with disease severity and activity in AOSD. A -173 G/C single nucleotide polymorphism (SNP) (rs755622) and a -794 CATT5-8 repeat (rs5844572) in the MIF promoter have been reported. In this study, we sought to explore the relationship between functional MIF promoter polymorphisms and MIF expression in AOSD.
Methods
100 patients and 200 controls were recruited in the study. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was utilized to analyze the -173 G/C SNP (rs755622) and PCR-based size discrimination assay was applied to detect the -794 CATT5-8 repeat (rs5844572) in the MIF promoter. Plasma MIF levels were measured by ELISA. MIF mRNA levels were quantified by real-time reverse transcription (RT)-PCR. Bisulfate genomic sequencing was employed to evaluate DNA methylation status within the MIF promoter.
Results
We identified that the frequencies of MIF -794 CATT5 (P = 0.001) allele and the expression of MIF (P <0.001) were increased in patients compared to healthy controls. Plasma levels of MIF in patients with CC genotype were higher than those of patients with GC or GG genotypes (P = 0.05). In patients with established AOSD, a higher frequency of -794 CATT7 containing MIF genotypes was observed in those with liver dysfunction (P = 0.009). Haplotype analysis revealed a higher representation of the MIF haplotype defined by -173*C/-794 CATT5 (C5) in AOSD patients (P = 0.001).
Conclusion
Functional promoter polymorphisms in the MIF gene influence plasma MIF levels in AOSD and may contribute to disease susceptibility or clinical presentation of AOSD.
doi:10.1186/ar4239
PMCID: PMC4060242  PMID: 23721694
macrophage migration inhibitory factor; adult onset still's disease; gene polymorphism; gene expression; DNA methylation
12.  Differential baseline expression and angiotensin II–stimulation of leukemia-associated RhoGEF in vascular smooth muscle cells of spontaneously hypertensive rats 
Purpose
Studies to explore angiotensin II (Ang II) and its downstream signaling pathways via Rho guanine nucleotide exchange factors (RhoGEFs) and RhoA signaling are crucial to understanding the mechanisms of smooth muscle contraction leading to hypertension. This study aimed to investigate the Ang II–induced expression of RhoGEFs in vascular smooth muscle cells (VSMCs) of spontaneously hypertensive rats (SHRs) and to identify the possible regulator associated with hypertension.
Methods
Cultured VSMCs of the aorta from SHRs and Wistar-Kyoto (WKY) rats were treated with or without Ang II or Ang II plus Ang II type 2 receptor antagonists. The expression levels of RhoGEF messenger RNA (mRNA) and protein were determined. To evaluate the changes of aortic ring contractile force in response to Ang II, a nonviral carrier system was adopted to deliver the leukemia-associated RhoGEF (LARG) small interfering RNA via nanoparticles into aortic rings.
Results
The baseline mRNA levels of three RhoGEFs in cultured VSMCs of WKY rats did not increase with age, but they were significantly higher in 12-week-old SHRs than in 5-week-old SHRs. Expression levels of LARG mRNA were higher in SHRs than in age-matched WKY rats. The baseline LAGR protein of 12-week-old SHRs was about four times higher than that of WKY rats of the same age. After Ang II–stimulation, LAGR protein expression was significantly increased in 12-week-old WKY rats but remained unchanged in 12-week-old SHRs. LARG small interfering RNA was successfully delivered into aortic rings using nanoparticles. LARG knockdown resulted in 12-week-old SHRs showing the greatest reduction in aortic ring contraction.
Conclusion
There were differences in age-related RhoGEF expression at baseline and in response to Ang II–stimulation between SHRs and WKY rats in this study. Nanotechnology can assist in studying the silencing of LARG in tissue culture. The findings of this study indicate that LARG gene expression may be associated with the genesis of hypertension in SHRs.
doi:10.2147/IJN.S36700
PMCID: PMC3518287  PMID: 23233801
Rho guanine nucleotide exchange factor; leukemia-associated Rho guanine nucleotide exchange factor; Wistar-Kyoto rats; nanoparticle delivery; hypertension
13.  Genomic signatures characterize leukocyte infiltration in myositis muscles 
BMC Medical Genomics  2012;5:53.
Background
Leukocyte infiltration plays an important role in the pathogenesis and progression of myositis, and is highly associated with disease severity. Currently, there is a lack of: efficacious therapies for myositis; understanding of the molecular features important for disease pathogenesis; and potential molecular biomarkers for characterizing inflammatory myopathies to aid in clinical development.
Methods
In this study, we developed a simple model and predicted that 1) leukocyte-specific transcripts (including both protein-coding transcripts and microRNAs) should be coherently overexpressed in myositis muscle and 2) the level of over-expression of these transcripts should be correlated with leukocyte infiltration. We applied this model to assess immune cell infiltration in myositis by examining mRNA and microRNA (miRNA) expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls.
Results
Several gene signatures, including a leukocyte index, type 1 interferon (IFN), MHC class I, and immunoglobulin signature, were developed to characterize myositis patients at the molecular level. The leukocyte index, consisting of genes predominantly associated with immune function, displayed strong concordance with pathological assessment of immune cell infiltration. This leukocyte index was subsequently utilized to differentiate transcriptional changes due to leukocyte infiltration from other alterations in myositis muscle. Results from this differentiation revealed biologically relevant differences in the relationship between the type 1 IFN pathway, miR-146a, and leukocyte infiltration within various myositis subtypes.
Conclusions
Results indicate that a likely interaction between miR-146a expression and the type 1 IFN pathway is confounded by the level of leukocyte infiltration into muscle tissue. Although the role of miR-146a in myositis remains uncertain, our results highlight the potential benefit of deconvoluting the source of transcriptional changes in myositis muscle or other heterogeneous tissue samples. Taken together, the leukocyte index and other gene signatures developed in this study may be potential molecular biomarkers to help to further characterize inflammatory myopathies and aid in clinical development. These hypotheses need to be confirmed in separate and sufficiently powered clinical trials.
doi:10.1186/1755-8794-5-53
PMCID: PMC3541209  PMID: 23171592
Myositis; Genomics; Leukocyte infiltration; Type 1 interferon; miR-146a
14.  A Novel Vector-Based Method for Exclusive Overexpression of Star-Form MicroRNAs 
PLoS ONE  2012;7(7):e41504.
The roles of microRNAs (miRNAs) as important regulators of gene expression have been studied intensively. Although most of these investigations have involved the highly expressed form of the two mature miRNA species, increasing evidence points to essential roles for star-form microRNAs (miRNA*), which are usually expressed at much lower levels. Owing to the nature of miRNA biogenesis, it is challenging to use plasmids containing miRNA coding sequences for gain-of-function experiments concerning the roles of microRNA* species. Synthetic microRNA mimics could introduce specific miRNA* species into cells, but this transient overexpression system has many shortcomings. Here, we report that specific miRNA* species can be overexpressed by introducing artificially designed stem-loop sequences into short hairpin RNA (shRNA) overexpression vectors. By our prototypic plasmid, designed to overexpress hsa-miR-146b-3p, we successfully expressed high levels of hsa-miR-146b-3p without detectable change of hsa-miR-146b-5p. Functional analysis involving luciferase reporter assays showed that, like natural miRNAs, the overexpressed hsa-miR-146b-3p inhibited target gene expression by 3′UTR seed pairing. Our demonstration that this method could overexpress two other miRNAs suggests that the approach should be broadly applicable. Our novel strategy opens the way for exclusively stable overexpression of miRNA* species and analyzing their unique functions both in vitro and in vivo.
doi:10.1371/journal.pone.0041504
PMCID: PMC3400617  PMID: 22829954
15.  Prediction and Identification of T Cell Epitopes in the H5N1 Influenza Virus Nucleoprotein in Chicken 
PLoS ONE  2012;7(6):e39344.
T cell epitopes can be used for the accurate monitoring of avian influenza virus (AIV) immune responses and the rational design of vaccines. No T cell epitopes have been previously identified in the H5N1 AIV virus nucleoprotein (NP) in chickens. For the first time, this study used homology modelling techniques to construct three-dimensional structures of the peptide-binding domains of chicken MHC class Ι molecules for four commonly encountered unique haplotypes, i.e., B4, B12, B15, and B19. H5N1 AIV NP was computationally parsed into octapeptides or nonapeptides according to the peptide-binding motifs of MHC class I molecules of the B4, B12, B15 and B19 haplotypes. Seventy-five peptide sequences were modelled and their MHC class I molecule-binding abilities were analysed by molecular docking. Twenty-five peptides (Ten for B4, six for B12, two for B15, and seven for B19) were predicted to be potential T cell epitopes in chicken. Nine of these peptides and one unrelated peptide were manually synthesized and their T cell responses were tested in vitro. Spleen lymphocytes were collected from SPF chickens that had been immunised with a NP-expression plasmid, pCAGGS-NP, and they were stimulated using the synthesized peptides. The secretion of chicken IFN-γ and the proliferation of CD8+ T cells were tested using an ELISA kit and flow cytometry, respectively. The significant secretion of chicken IFN-γ and proliferation of CD8+ T lymphocytes increased by 13.7% and 11.9% were monitored in cells stimulated with peptides NP89–97 and NP198–206, respectively. The results indicate that peptides NP89–97 (PKKTGGPIY) and NP198–206 (KRGINDRNF) are NP T cell epitopes in chicken of certain haplotypes. The method used in this investigation is applicable to predicting T cell epitopes for other antigens in chicken, while this study also extends our understanding of the mechanisms of the immune response to AIV in chicken.
doi:10.1371/journal.pone.0039344
PMCID: PMC3379973  PMID: 22745738
16.  New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus 
Arthritis Research & Therapy  2012;14(3):R103.
Introduction
Glucocorticoid (GC) therapy remains important in improving the prognosis of patients with systemic lupus erythematosus (SLE). However, some patients do not achieve an effective response with GC treatment, creating an obstacle to the remission of SLE. Identification of the underlying mechanisms responsible for steroid resistance can be significant. Macrophage migration inhibitory factor (MIF) arouses our interest because of its reciprocal relationship with GCs. In the present study, we investigated for the first time whether MIF correlated with steroid resistance in SLE and explored potential mechanisms of action.
Methods
Sixty-two patients with SLE (40 steroid sensitive and 22 steroid resistant) and 21 normal controls were recruited. Serum levels of MIF were measured by ELISA. Cytosolic MIF and IκB expression in peripheral blood mononuclear cells (PBMCs) were determined by western blotting. The electrophoretic mobility shift assay was assessed by NF-κB in nuclear aliquots. Gene silencing was applied to reduce expression of MIF in PBMCs in steroid-resistant patients. PBMCs obtained from steroid-sensitive patients were treated with recombinant human MIF of different concentrations.
Results
MIF levels in serum and PBMCs were higher in steroid-resistant patients compared with steroid-sensitive patients and controls. In contrast to the steroid-sensitive group, NF-κB levels were significantly higher and IκB levels lower in steroid-resistant patients. After MIF gene silencing, IκB levels in cells from steroid-resistant patients were increased. In steroid-sensitive patients, a decrease in IκB levels and an increase in NF-κB expression from baseline were detected in PBMCs treated with a higher concentration of recombinant human MIF. Treatment with recombinant human MIF did not regulate expression of IκB and NF-κB in PBMCs from patients treated with an anti-MIF monoclonal antibody.
Conclusions
Our results indicated that MIF may play a role in the formation of steroid resistance in SLE by affecting the NF-κB/IκB signaling cascade. As a regulator of glucocorticoid sensitivity, MIF may be a potential target for steroid sparing.
doi:10.1186/ar3828
PMCID: PMC3446480  PMID: 22551315
17.  Association of a functional IRF7 variant with systemic lupus erythematosus 
Arthritis and Rheumatism  2011;63(3):749-754.
Objective
Previous genome wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 SNP 23kb telomeric to IRF7, in strong association with SLE. This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE.
Methods
We genotyped one KIAA1542 SNP rs4963128 and one IRF7 SNP rs1131665 (Q412R) in an Asian population (cases vs. controls: 1302 vs.1479) to assess their association with SLE using custom-designed Beadstation Infinium II platform (Illumina). Subsequently, rs1131665 was further genotyped in independent panels of Chinese (528 vs.527), European American (EA) (446 vs.461) and African American (AA) (159 vs.115) by Taqman genotyping assay to seek confirmation of association in various ethnic groups. Luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF7.
Results
Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, EA and AA populations (case vs. control: 2435 vs. 2582; Pmeta = 6.18×10−6, OR = 1.42[1.22–1.65]). Expression of IRF7 412Q risk allele resulted in a 2-fold increase in ISRE transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting IRF7 412Q confers elevated IRF7 activity and may therefore affect downstream IFN pathway.
Conclusion
We showed that the major allele of a nonsynonymous SNP rs1131665 (412Q) in IRF7 confers elevated IRF7 activation and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence supporting IRF7 may be a risk gene for human SLE.
doi:10.1002/art.30193
PMCID: PMC3063317  PMID: 21360504
18.  Stereo-Selective Metabolism of Methadone by Human Liver Microsomes and cDNA-Expressed Cytochrome P450s: A Reconciliation 
In vitro metabolism of methadone was investigated in cytochrome P450 (CYP) Supersomes and phenotyped human liver microsomes (HLMs) to reconcile past findings on CYP involvement in stereo-selective metabolism of methadone. Racemic methadone was used for incubations; (R)-and (S)-methadone turnover and (R)- and (S)-EDDP formation were determined using chiral liquid chromatography-tandem mass spectrometry. CYP Supersome activity for methadone use and EDDP formation ranked CYP2B6>3A4>2C19>2D6>2C18, 3A7>2C8, 2C9, 3A5. After abundance scaling, CYP3A4, 2B6 and 2C19 accounted for 63–74, 12–32 and 1,4–14% of respective activity. CYP2B6, 2D6 and 2C18 demonstrated a preference for (S)-EDDP formation; CYP2C19, 3A7 and 2C8 for (R)-EDDP; 3A4 none. Correlation analysis with 15 HLMs supported the involvement of CYP2B6 and 3A. The significant correlation of S/R ratio with CYP2B6 activity confirmed its stereo-selectivity. CYP2C19 and 2D6 inhibitors and monoclonal antibody (mAb) did not inhibit EDDP formation in HLM. Chemical and mAb inhibition of CYP3A in high 3A activity HLM reduced EDDP formation by 60–85%; inhibition of CYP2B6 in 2B6 high activity HLM reduced (S)-EDDP formation by 80% and (R)-EDDP formation by 55%. Inhibition changed methadone metabolism in a stereo-selective manner. When CYP3A was inhibited, 2B6 mediated (S)-EDDP formation predominated; S/R stereo-selectivity increased. When 2B6 was inhibited (S)-EDDP formation fell and stereo-selectivity decreased. The results confirmed the primary roles of CYPs 3A4 and 2B6 in methadone metabolism; CYP2C8 and 2C9 did not appear involved; 2C19 and 2D6 have minimal roles. CYP2B6 is the primary determinant of stereo-selective metabolism; stereo-selective inhibition might play a role in varied plasma concentrations of the two enantiomers.
doi:10.1111/j.1742-7843.2010.00628.x
PMCID: PMC3005981  PMID: 20825389
19.  Selective IgA Deficiency in Autoimmune Diseases 
Molecular Medicine  2011;17(11-12):1383-1396.
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) on the basis of both our own recent large-scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the major histocompatibility complex (MHC) region has been reported. In addition, non-MHC genes, such as interferon-induced helicase 1 (IFIH1) and c-type lectin domain family 16, member A (CLEC16A), are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.
doi:10.2119/molmed.2011.00195
PMCID: PMC3321806  PMID: 21826374
20.  Calcium Prevents Tumorigenesis in a Mouse Model of Colorectal Cancer 
PLoS ONE  2011;6(8):e22566.
Background and Aim
Calcium has been proposed as a mediator of the chemoprevention of colorectal cancer (CRC), but the comprehensive mechanism underlying this preventive effect is not yet clear. Hence, we conducted this study to evaluate the possible roles and mechanisms of calcium-mediated prevention of CRC induced by 1,2-dimethylhydrazine (DMH) in mice.
Methods
For gene expression analysis, 6 non-tumor colorectal tissues of mice from the DMH + Calcium group and 3 samples each from the DMH and control groups were hybridized on a 4×44 K Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction (PCR). Functional analysis of the microarray data was performed using KEGG and Gene Ontology (GO) analyses. Hub genes were identified using Pathway Studio software.
Results
The tumor incidence rates in the DMH and DMH + Calcium groups were 90% and 40%, respectively. Microarray gene expression analysis showed that S100a9, Defa20, Mmp10, Mmp7, Ptgs2, and Ang2 were among the most downregulated genes, whereas Per3, Tef, Rnf152, and Prdx6 were significantly upregulated in the DMH + Calcium group compared with the DMH group. Functional analysis showed that the Wnt, cell cycle, and arachidonic acid pathways were significantly downregulated in the DMH + Calcium group, and that the GO terms related to cell differentiation, cell cycle, proliferation, cell death, adhesion, and cell migration were significantly affected. Forkhead box M1 (FoxM1) and nuclear factor kappa-B (NF-κB) were considered as potent hub genes.
Conclusion
In the DMH-induced CRC mouse model, comprehensive mechanisms were involved with complex gene expression alterations encompassing many altered pathways and GO terms. However, how calcium regulates these events remains to be studied.
doi:10.1371/journal.pone.0022566
PMCID: PMC3157344  PMID: 21857934
21.  Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity 
PLoS ONE  2011;6(7):e21671.
Introduction
Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE.
Methods
Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored.
Results
We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells.
Conclusions
The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE.
doi:10.1371/journal.pone.0021671
PMCID: PMC3142107  PMID: 21799742
22.  Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases 
Rheumatology (Oxford, England)  2010;49(7):1239-1244.
Objectives. Recently, a non-synonymous (Gly307Ser) variant, rs763361, in the CD226 gene was shown to be associated with multiple autoimmune diseases (ADs) in European Caucasian populations. However, shared autoimmunity with CD226 has not been evaluated in non-European populations. The aim of the present study is to assess the association of this single nucleotide polymorphism (SNP) with ADs in non-European populations.
Methods. To replicate this association in non-European populations, we evaluated case–control association between rs763361 and coeliac disease (CED) samples from Argentina; SLE, RA, type-1 diabetes (T1D) and primary SS (pSS) from Colombia; and SLE samples from China and Japan. We genotyped rs763361 and evaluated its genetic association with multiple ADs, using χ2-test. For each association, odds ratio (OR) and 95% CI were calculated.
Results. We show that rs763361 is significantly associated with Argentinean CED (P = 0.0009, OR = 1.60). We also observed a trend of possible association with Chinese SLE (P = 0.01, OR = 1.19), RA (P = 0.047, OR = 1.25), SLE (P = 0.0899, OR = 1.24) and pSS (P = 0.09, OR = 1.33) in Colombians. Meta-analyses for SLE (using our three populations) and T1D (our population and three published populations) yielded significant association with rs763361, P = 0.009 (OR = 1.16) and P = 1.1.46 × 10−9 (OR = 1.14), respectively.
Conclusions. Our results demonstrate that the coding variant rs763361 in CD226 gene is associated with multiple ADs in non-European populations.
doi:10.1093/rheumatology/kep470
PMCID: PMC2909799  PMID: 20338887
CD226; Autoimmunity; Latin-America; Asia
23.  A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus 
PLoS Genetics  2011;7(6):e1002128.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic predisposition, characterized by an upregulated type I interferon pathway. MicroRNAs are important regulators of immune homeostasis, and aberrant microRNA expression has been demonstrated in patients with autoimmune diseases. We recently identified miR-146a as a negative regulator of the interferon pathway and linked the abnormal activation of this pathway to the underexpression of miR-146a in SLE patients. To explore why the expression of miR-146a is reduced in SLE patients, we conducted short parallel sequencing of potentially regulatory regions of miR-146a and identified a novel genetic variant (rs57095329) in the promoter region exhibiting evidence for association with SLE that was replicated independently in 7,182 Asians (Pmeta = 2.74×10−8, odds ratio = 1.29 [1.18–1.40]). The risk-associated G allele was linked to reduced expression of miR-146a in the peripheral blood leukocytes of the controls. Combined functional assays showed that the risk-associated G allele reduced the protein-binding affinity and activity of the promoter compared with those of the promoter containing the protective A allele. Transcription factor Ets-1, encoded by the lupus-susceptibility gene ETS1, identified in recent genome-wide association studies, binds near this variant. The manipulation of Ets-1 levels strongly affected miR-146a promoter activity in vitro; and the knockdown of Ets-1, mimicking its reduced expression in SLE, directly impaired the induction of miR-146a. We also observed additive effects of the risk alleles of miR-146a and ETS1. Our data identified and confirmed an association between a functional promoter variant of miR-146a and SLE. This risk allele had decreased binding to transcription factor Ets-1, contributing to reduced levels of miR-146a in SLE patients.
Author Summary
Genome-wide association studies have identified quite a number of susceptibility loci associated with complex diseases such as systemic lupus erythematosus (SLE). However, for most of them, the intrinsic link between genetic variation and disease mechanism is not fully understood. SLE is characterized by a significantly upregulated type I interferon (IFN) pathway, and we have previously reported that underexpression of a microRNA, miR-146a, contributes to alterations in the type I IFN pathway in lupus patients. Here we identified a novel genetic variant in the promoter region of miR-146a that is directly related to reduced expression of miR-146a and is associated with SLE susceptibility. The risk allele of this variant confers weaker binding affinity for Ets-1, which is a transcription factor encoded by a lupus susceptibility gene found in recent GWAS. These findings suggest that reduced expression of Ets-1 and its reduced binding affinity to the miR-146a promoter both may contribute to low levels of this microRNA in SLE patients, which may contribute to the upregulated type I IFN pathway in these patients. To our knowledge, this is also the first piece of evidence showing association between a genetic variant in a promoter region of a miRNA gene and a human disease.
doi:10.1371/journal.pgen.1002128
PMCID: PMC3128113  PMID: 21738483
24.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
25.  Potent Anti-Tumor Effect Generated by a Novel Human Papillomavirus (HPV) Antagonist Peptide Reactivating the pRb/E2F Pathway 
PLoS ONE  2011;6(3):e17734.
Human papillomavirus type 16 (HPV16) E7 is a viral oncoprotein believed to play a major role in cervical cancer. In this study, an antagonist peptide against HPV16E7 protein was first identified from screening the c7c phage display peptide library. The binding specificity and affinity of the selected peptide to HPV16E7 were tested by competitive enzyme-linked immunosorbent assay (ELISA). The antagonist peptide showed obvious anti-tumor efficacy both in cell lines and animal tumor models. Significant cell proliferation inhibition with high specificity was noted when HPV16-positive cells were treated with the peptide. This anti-tumor efficacy was resulted from overriding the activities of HPV16E7 and reactivating the pRb/E2F pathway, as shown by a series of experiments. Flow cytometry analysis revealed that the selected peptide induced G1 arrest in a dose-dependent manner. Competitive ELISA, pull down, and Co-IP experiments indicated that the selected peptide disrupted the interaction between HPV16E7 and pRb proteins both in vitro and in vivo. Luciferase reporter assay verified that transcription activities of E2F were suppressed by the peptide through restoration of pRb. RT-PCR and Western blot revealed that it reduced cyclins A, D1, and E1 expression, and led to HPV16E7 protein degradation, but pRb protein stabilization. The current study suggests that this specific peptide may serve as a potential therapeutic agent for HPV16-positive cervical cancer.
doi:10.1371/journal.pone.0017734
PMCID: PMC3057995  PMID: 21423621

Results 1-25 (38)