PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (58)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genome-wide Association Study of Dermatomyositis Reveals Genetic Overlap with other Autoimmune Disorders 
Arthritis and rheumatism  2013;65(12):3239-3247.
Objective
To identify new genetic associations with juvenile and adult dermatomyositis (DM).
Methods
We performed a genome-wide association study (GWAS) of adult and juvenile DM patients of European ancestry (n = 1178) and controls (n = 4724). To assess genetic overlap with other autoimmune disorders, we examined whether 141 single nucleotide polymorphisms (SNPs) outside the major histocompatibility complex (MHC) locus, and previously associated with autoimmune diseases, predispose to DM.
Results
Compared to controls, patients with DM had a strong signal in the MHC region consisting of GWAS-level significance (P < 5x10−8) at 80 genotyped SNPs. An analysis of 141 non-MHC SNPs previously associated with autoimmune diseases showed that three SNPs linked with three genes were associated with DM, with a false discovery rate (FDR) < 0.05. These genes were phospholipase C like 1 (PLCL1, rs6738825, FDR=0.00089), B lymphoid tyrosine kinase (BLK, rs2736340, FDR=0.00031), and chemokine (C-C motif) ligand 21 (CCL21, rs951005, FDR=0.0076). None of these genes was previously reported to be associated with DM.
Conclusion
Our findings confirm the MHC as the major genetic region associated with DM and indicate that DM shares non-MHC genetic features with other autoimmune diseases, suggesting the presence of additional novel risk loci. This first identification of autoimmune disease genetic predispositions shared with DM may lead to enhanced understanding of pathogenesis and novel diagnostic and therapeutic approaches.
doi:10.1002/art.38137
PMCID: PMC3934004  PMID: 23983088
dermatomyositis; adult; juvenile; shared autoimmunity genes
2.  Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci 
Nature genetics  2010;42(6):508-514.
To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles.
doi:10.1038/ng.582
PMCID: PMC4243840  PMID: 20453842
3.  Genome-wide association analysis of anti-TNF drug response in rheumatoid arthritis patients 
Annals of the rheumatic diseases  2012;72(8):1375-1381.
Background
Treatment strategies blocking tumor necrosis factor (anti-TNF) have proven very successful in patients with rheumatoid arthritis (RA). However, a significant subset of patients does not respond for unknown reasons. Currently there are no means of identifying these patients prior to treatment. This study was aimed at identifying genetic factors predicting anti-TNF treatment outcome in patient with RA using a genome-wide association approach.
Methods
We conducted a multi-stage, genome-wide association study with a primary analysis of 2,557,253 single nucleotide polymorphisms (SNPs) in 882 RA patients receiving anti-TNF therapy included through the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry and the database of Apotheekzorg. Linear regression analysis of changes in the Disease Activity Score in 28 joints after 14 weeks of treatment was performed using an additive model. Markers with a p<10−3 were selected for replication in 1,821 RA patients from three independent cohorts. Pathway analysis including all SNPs with a p-value < 10−3 was performed using Ingenuity.
Results
Seven hundred seventy two markers demonstrated evidence of association with treatment outcome in the initial stage. Eight genetic loci showed improved p-value in the overall meta-analysis compared to the first stage, three of which (rs1568885, rs1813443 and rs4411591) showed directional consistency over all four studied cohorts. We were unable to replicate markers previously reported to be associated with anti-TNF outcome. Network analysis indicated strong involvement of biological processes underlying inflammatory response and cell morphology.
Conclusion
Using a multi-stage strategy, we have identified 8 genetic loci associated with response to anti-TNF treatment. Further studies are required to validate these findings in additional patient collections.
doi:10.1136/annrheumdis-2012-202405
PMCID: PMC4169706  PMID: 23233654
anti-TNF; gene polymorphism; pharmacogenetics; rheumatoid arthritis; genome-wide association study
4.  Common Variants near the Melanocortin 4 Receptor Gene are Associated with Severe Antipsychotic Drug-induced Weight Gain 
Archives of general psychiatry  2012;69(9):904-912.
Context
Second-generation antipsychotics (SGAs) are increasingly used in the treatment of many psychotic and non-psychotic disorders. Unfortunately, SGAs are often associated with substantial weight gain, with no means to predict which patients are at greatest risk.
Objective
To detect alleles of single nucleotide polymorphisms (SNPs) associated with antipsychotic drug-induced weight gain.
Design
Pharmacogenetic association study
Setting
Discovery cohort was collected at a U.S. general psychiatric hospital. Three additional cohorts were collected from psychiatric hospitals in the U.S. and Germany, and from a European antipsychotic drug trial.
Participants
The discovery cohort was comprised of 139 pediatric patients undergoing first exposure to SGA treatment. An additional three cohorts were comprised of 73, 40 and 92 subjects.
Intervention
Patients in the discovery cohort were treated with SGAs for twelve weeks. Additional cohorts were treated for six and twelve weeks.
Main outcome measure
We conducted a genome-wide association study (GWAS) assessing weight gain associated with twelve weeks of SGA treatment in patients undergoing first exposure to antipsychotic treatment. We next genotyped three independent cohorts of subjects assessed for antipsychotic drug-induced weight gain.
Results
GWAS yielded twenty SNPs at a single locus exceeding a statistical threshold of p < 10−5. This locus, near the melanocortin 4 receptor (MC4R) gene, overlaps a region previously identified by large-scale GWAS of obesity in the general population. Effects were recessive, with minor allele homozygotes gaining extreme amounts of weight over the 12-week trial. These results were replicated in three additional cohorts with SNP rs489693 demonstrating consistent recessive effects; meta analysis revealed a genome-wide significant effect (p=5.59×10−12). Moreover, we observed consistent effects on related metabolic indices, including triglycerides, leptin, insulin, and HOMA-IR in our discovery cohort.
Conclusion
These data implicate the MC4R locus in extreme SGA-induced weight gain and related metabolic disturbances. A priori identification of high-risk subjects could lead to alternative treatment strategies in this population.
doi:10.1001/archgenpsychiatry.2012.191
PMCID: PMC4166499  PMID: 22566560
5.  Immunochip Identifies Novel, and Replicates Known, Genetic Risk Loci for Rheumatoid Arthritis in Black South Africans 
Molecular Medicine  2014;20(1):341-349.
The aim of this study was to identify genetic variants associated with rheumatoid arthritis (RA) risk in black South Africans. Black South African RA patients (n = 263) were compared with healthy controls (n = 374). Genotyping was performed using the Immunochip, and four-digit high-resolution human leukocyte antigen (HLA) typing was performed by DNA sequencing of exon 2. Standard quality control measures were implemented on the data. The strongest associations were in the intergenic region between the HLA-DRB1 and HLA-DQA1 loci. After conditioning on HLA-DRB1 alleles, the effect in the rest of the extended major histocompatibility (MHC) diminished. Non-HLA single nucleotide polymorphisms (SNPs) in the intergenic regions LOC389203|RBPJ, LOC100131131|IL1R1, KIAA1919|REV3L, LOC643749|TRAF3IP2, and SNPs in the intron and untranslated regions (UTR) of IRF1 and the intronic region of ICOS and KIAA1542 showed association with RA (p < 5 × 10−5). Of the SNPs previously associated with RA in Caucasians, one SNP, rs874040, locating to the intergenic region LOC389203|RBPJ was replicated in this study. None of the variants in the PTPN22 gene was significantly associated. The seropositive subgroups showed similar results to the overall cohort. The effects observed across the HLA region are most likely due to HLA-DRB1, and secondary effects in the extended MHC cannot be detected. Seven non-HLA loci are associated with RA in black South Africans. Similar to Caucasians, the intergenic region between LOC38920 and RBPJ is associated with RA in this population. The strong association of the R620W variant of the PTPN22 gene with RA in Caucasians was not replicated since this variant was monomorphic in our study, but other SNP variants of the PTPN22 gene were also not associated with RA in black South Africans, suggesting that this locus does not play a major role in RA in this population.
doi:10.2119/molmed.2014.00097
PMCID: PMC4153842  PMID: 25014791
6.  European Population Substructure Correlates with Systemic Lupus Erythematosus Endophenotypes in North Americans of European Descent 
Genes and immunity  2009;11(6):515-521.
Previous work has demonstrated that northern and southern European ancestries are associated with specific systemic lupus erythematosus (SLE) manifestations. Here, 1855 SLE cases of European descent were genotyped for 4965 single nucleotide polymorphisms and principal components analysis of genotype information was used to define population substructure. The first principal component (PC1) distinguished northern from southern European ancestry, PC2 differentiated eastern from western European ancestry, and PC3 delineated Ashkenazi Jewish ancestry. Compared to northern European ancestry, southern European ancestry was associated with autoantibody production (OR=1.40, 95% CI 1.07-1.83) and renal involvement (OR 1.41, 95% CI 1.06-1.87), and was protective for discoid rash (OR=0.51, 95% CI 0.32-0.82) and photosensitivity (OR=0.74, 95% CI 0.56-0.97). Both serositis (OR=1.46, 95% CI 1.12-1.89) and autoantibody production (OR=1.38, 95% CI 1.06-1.80) were associated with Western compared to Eastern European ancestry. Ashkenazi Jewish ancestry was protective against neurologic manifestations of SLE (OR=0.62, 95% CI 0.40-0.94). Homogeneous clusters of cases defined by multiple PCs demonstrated stronger phenotypic associations. Genetic ancestry may contribute to the development of SLE endophenotypes and should be accounted for in genetic studies of disease characteristics.
doi:10.1038/gene.2009.80
PMCID: PMC3951966  PMID: 19847193
Systemic lupus erythematosus; epidemiology; population substructure; genetics
7.  Genome-Wide Methylation Analyses in Glioblastoma Multiforme 
PLoS ONE  2014;9(2):e89376.
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.
doi:10.1371/journal.pone.0089376
PMCID: PMC3931727  PMID: 24586730
8.  Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder 
Nature Communications  2013;4:2739.
Schizophrenia and bipolar disorder are major psychiatric disorders with high heritability and overlapping genetic variance. Here we perform a genome-wide association study in an ethnically homogeneous cohort of 904 schizophrenia cases and 1,640 controls drawn from the Ashkenazi Jewish population. We identify a novel genome-wide significant risk locus at chromosome 4q26, demonstrating the potential advantages of this founder population for gene discovery. The top single-nucleotide polymorphism (SNP; rs11098403) demonstrates consistent effects across 11 replication and extension cohorts, totalling 23, 191 samples across multiple ethnicities, regardless of diagnosis (schizophrenia or bipolar disorder), resulting in Pmeta=9.49 × 10−12 (odds ratio (OR)=1.13, 95% confidence interval (CI): 1.08–1.17) across both disorders and Pmeta=2.67 × 10−8 (OR=1.15, 95% CI: 1.08–1.21) for schizophrenia alone. In addition, this intergenic SNP significantly predicts postmortem cerebellar gene expression of NDST3, which encodes an enzyme critical to heparan sulphate metabolism. Heparan sulphate binding is critical to neurite outgrowth, axon formation and synaptic processes thought to be aberrant in these disorders.
Schizophrenia and bipolar disorder are important psychiatric disorders with overlapping genetic components. Here, the authors identify and replicate a genome-wide significant risk locus for the two disorders, and suggest a role for NDST3 in severe psychiatric disease.
doi:10.1038/ncomms3739
PMCID: PMC3905728  PMID: 24253340
9.  Genome-Wide Association Study Reveals Novel Genetic Determinants of DNA Repair Capacity in Lung Cancer 
Cancer research  2012;73(1):256-264.
Suboptimal cellular DNA repair capacity (DRC) has been shown to be associated with enhanced cancer risk, but genetic variants affecting the DRC phenotype have not been comprehensively investigated. In this study, with the available DRC phenotype data, we analyzed correlations between the DRC phenotype and genotypes detected by the Illumina 317K platform in 1,774 individuals of European ancestry from a Texas lung cancer genome-wide association study. The discovery phase was followed by a replication in an independent set of 1,374 cases and controls of European ancestry. We applied a generalized linear model with SNPs as predictors and DRC (a continuous variable) as the outcome. Covariates of age, sex, pack-years of smoking, DRC assay-related variables and case-control status of the study participants were adjusted in the model. We validated that reduced DRC was associated with an increased risk of lung cancer in both independent datasets. Several suggestive loci that contributed to the DRC phenotype were defined in ERCC2/XPD, PHACTR2 and DUSP1. In summary, we determined that DRC is an independent risk factor for lung cancer and we defined several genetic loci contributing to DRC phenotype.
doi:10.1158/0008-5472.CAN-12-1915
PMCID: PMC3537906  PMID: 23108145
DNA repair capacity; genetic susceptibility; genome-wide association; molecular epidemiology
10.  European Genetic Ancestry is Associated with a Decreased Risk of Lupus Nephritis 
Arthritis and rheumatism  2012;64(10):10.1002/art.34567.
Objective
African Americans, East Asians, and Hispanics with systemic lupus erythematosus (SLE) are more likely to develop renal disease than SLE patients of European descent. We investigated whether European genetic ancestry protects against the development of lupus nephritis and explored genetic and socioeconomic factors that might explain this effect.
Methods
This was a cross-sectional study of 1906 adults with SLE. Participants were genotyped for 126 single nucleotide polymorphisms (SNPs) informative for ancestry. A subset of participants was also genotyped for 80 SNPs in 14 candidate genes for renal disease in SLE. We used logistic regression to test the association between European ancestry and renal disease. Analyses adjusted for continental ancestries, socioeconomic status, and candidate genes.
Results
Participants (n=1906) had on average 62.4% European, 15.8% African, 11.5% East Asian, 6.5% Amerindian, and 3.8% South Asian ancestry. Among participants, 34% (n=656) had renal disease. A 10% increase in European ancestry was associated with a 15% reduction in the odds of having renal disease after adjustment for disease duration and sex (OR 0.85, 95% CI 0.82-0.87, p=1.9 × 10−30). Adjusting for other genetic ancestries, measures of socioeconomic status, or SNPs in genes most associated with renal disease (IRF5 (rs4728142), BLK (rs2736340), STAT4 (rs3024912), ITGAM (rs9937837) and HLA-DRB1*0301 and DRB1*1501, p<0.05) did not substantively alter this relationship.
Conclusion
European ancestry is protective against the development of renal disease in SLE, an effect independent of other genetic ancestries, common risk alleles, and socioeconomic status.
doi:10.1002/art.34567
PMCID: PMC3865923  PMID: 23023776
11.  Risk for Myasthenia Gravis maps to 151Pro→ Ala change in TNIP1 and to HLA-B*08 
Annals of neurology  2012;72(6):927-935.
Objective
The objective of this study is to comprehensively define the genetic basis of Early Onset Myasthenia Gravis.
Methods
We have carried out a two-stage genome-wide association study on a total of 649 North European EOMG patients. Cases were matched 1:4 with controls of European ancestry. We performed imputation and conditional analyses across the major histocompatibility complex, as well as in the top regions of association outside the HLA region.
Results
We observed the strongest association in the HLA class I region at rs7750641 (p = 1.2 × 10−92, OR = 6.25). By imputation and conditional analyses, HLA-B*08 proves to be the major associated allele (p = 2.87 × 10−113, OR = 6.41). In addition to the expected association with PTPN22 (rs2476601, OR =1.71, p = 8.2 ×10−10), an imputed coding variant (rs2233290) at position 151 (Pro→Ala) in the TNFAIP3-interacting protein 1, TNIP1, confers even stronger risk than PTPN22 (OR = 1.91, p = 3.2 × 10−10).
Interpretation
The association at TNIP1 in EOMG implies disease mechanisms involving ubiquitin-dependent dysregulation of NF-κB signaling. The localization of the major HLA signal to the HLA-B*08 allele suggests that CD8+ T-cells may play a key role in disease initiation or pathogenesis.
doi:10.1002/ana.23691
PMCID: PMC3535539  PMID: 23055271
12.  Evolving Concepts: How Diet and the Intestinal Microbiome Act as Modulators of Breast Malignancy 
ISRN Oncology  2013;2013:693920.
The intestinal microbiome plays an important role in human physiology. Next-generation sequencing technologies, knockout and gnotobiotic mouse models, fecal transplant data and epidemiologic studies have accelerated our understanding of microbiome abnormalities seen in immune diseases and malignancies. Dysbiosis is the disturbed microbiome ecology secondary to external pressures such as host diseases, medications, diet and genetic conditions often leading to abnormalities of the host immune system. Specifically dysbiosis has been shown to lower circulating lymphocytes, and increase neutrophil to lymphocyte ratio, a finding which has been associated with a decreased survival in women with breast cancers. Dysbiosis also plays a role in the recycling of estrogens via the entero-hepatic circulation, increasing estrogenic potency in the host, which is another leading cause of breast malignancy. Non-modifiable factors such as age and genetic mutations disrupt the microbiome, but modifiable factors such as diet may also lead to profound disruptions as well. A better understanding of dietary factors and how they disrupt the microbiome may lead to beneficial nutritional interventions for breast cancer patients.
doi:10.1155/2013/693920
PMCID: PMC3800670  PMID: 24187630
13.  The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development 
Human Molecular Genetics  2012;21(17):3918-3925.
The gene B lymphocyte kinase (BLK) is associated with rheumatoid arthritis, systemic lupus erythematosus and several other autoimmune disorders. The disease risk haplotype is known to be associated with reduced expression of BLK mRNA transcript in human B cell lines; however, little is known about cis-regulation of BLK message or protein levels in native cell types. Here, we show that in primary human B lymphocytes, cis-regulatory effects of disease-associated single nucleotide polymorphisms in BLK are restricted to naïve and transitional B cells. Cis-regulatory effects are not observed in adult B cells in later stages of differentiation. Allelic expression bias was also identified in primary human T cells from adult peripheral and umbilical cord blood (UCB), thymus and tonsil, although mRNA levels were reduced compared with B cells. Allelic regulation of Blk expression at the protein level was confirmed in UCB B cell subsets by intracellular staining and flow cytometry. Blk protein expression in CD4+ and CD8+ T cells was documented by western blot analysis; however, differences in protein expression levels by BLK genotype were not observed in any T cell subset. Blk allele expression differences at the protein level are thus restricted to early B cells, indicating that the involvement of Blk in the risk for autoimmune disease likely acts during the very early stages of B cell development.
doi:10.1093/hmg/dds220
PMCID: PMC3412385  PMID: 22678060
14.  A rare deletion at distal 16p11.2 is implicated in schizophrenia 
JAMA psychiatry (Chicago, Ill.)  2013;70(3):253-260.
Context
Large genomic copy number variations (CNVs) have been implicated as strong risk factors for schizophrenia. However, the rarity of these events has created challenges for the identification of further pathogenic loci, and extremely large samples are required to provide convincing replication.
Objective
To detect novel CNVs increasing susceptibility to schizophrenia, utilizing two ethnically homogeneous discovery cohorts and replication in large samples.
Design
Genetic association study of microarray data.
Setting
DNA samples were collected at nine sites from different countries.
Participants
Two discovery cohorts were comprised of: a) 790 cases (schizophrenia and schizoaffective disorder) and 1347 controls of Ashkenazi Jewish descent; and b) 662 trios (offspring affected with schizophrenia or schizoaffective disorder) from Bulgaria. Replication datasets consisted of 12,398 cases and 17,945 controls.
Main outcome measure
Statistically increased rate of specific CNVs in cases versus controls.
Results
One novel locus was implicated: a deletion at distal 16p11.2, which does not overlap the proximal 16p11.2 locus previously reported in schizophrenia and autism. Deletions at this locus were found in 13 out of 13,850 cases (0.094%) and in 3 out of 19,954 controls (0.015%), Fisher Exact p = 0.0014; OR = 6.25 (95%CI = 1.78 – 21.93).
Conclusion
Deletions at distal 16p11.2 have been previously implicated in developmental delay and obesity. The region contains nine genes, several of which are implicated in neurological diseases, regulation of body weight, and glucose homeostasis. A telomeric extension of the deletion, observed in about half the cases but no controls, potentially implicates an additional eight genes. Our findings add a new locus to the list of CNVs that increase risk to develop schizophrenia.
doi:10.1001/2013.jamapsychiatry.71
PMCID: PMC3750982  PMID: 23325106
15.  CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B cell signaling and activation 
Nature genetics  2012;44(11):1227-1230.
C-src tyrosine kinase, Csk, physically interacts with the intracellular phosphatase Lyp (PTPN22) and can modify the activation state of downstream Src kinases, such as Lyn, in lymphocytes. We identified an association of Csk with systemic lupus erythematosus (SLE) and refined its location to an intronic polymorphism rs34933034 (OR 1.32, p = 1.04 × 10−9). The risk allele is associated with increased CSK expression and augments inhibitory phosphorylation of Lyn. In carriers of the risk allele, B cell receptor (BCR)-mediated activation of mature B cells, as well as plasma IgM, are increased. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele compared to non-risk haplotypes due to an expansion of the late transitional cells, a stage targeted by selection mechanisms. This suggests that the Lyp-Csk complex increases susceptibility to lupus at multiple maturation and activation points of B cells.
doi:10.1038/ng.2439
PMCID: PMC3715052  PMID: 23042117
16.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
doi:10.1038/ng.81
PMCID: PMC3712260  PMID: 18204446
17.  High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis 
Nature genetics  2012;44(12):1336-1340.
Summary
Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.
doi:10.1038/ng.2462
PMCID: PMC3605761  PMID: 23143596
18.  High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency 
PLoS Genetics  2012;8(1):e1002476.
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Author Summary
The human leukocyte antigen (HLA) locus is robustly associated with many immune-mediated conditions. However, identification of the genetic variants contributing to the disease pathophysiology has been greatly hampered by the extensive chromosomal conservation within this genomic region. To better understand the association of the HLA locus in selective IgA deficiency (IgAD), we used an extensive genotyping database from a recent genome-wide association study (GWAS) to generate a high-density SNP map of this region in a combined sample of >2,700 individuals from 3 independent European populations. In addition, we took advantage of recent methodological advances to impute the more common HLA-B, -DRB1, and -DQB1 alleles in all subjects. We confirmed the strong disease-association of the HLA locus and identified several different signals located in specific conserved HLA haplotypes contributing independent risk or protection for IgAD. Further analysis of the chromosomal sequences associated with the associated HLA alleles allowed us to refine the mapping of the susceptibility variants. These findings represent the most comprehensive high-density SNP mapping of the HLA locus in IgAD to date and provide important new information as to the location of the genetic variants contributing to this common immune deficiency.
doi:10.1371/journal.pgen.1002476
PMCID: PMC3266887  PMID: 22291608
19.  Implications for health and disease in the genetic signature of the Ashkenazi Jewish population 
Genome Biology  2012;13(1):R2.
Background
Relatively small, reproductively isolated populations with reduced genetic diversity may have advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents a unique population for study based on its recent (< 1,000 year) history of a limited number of founders, population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant alleles and pathways.
Results
Using clustering, principal components, and pairwise genetic distance as converging approaches, we identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception, potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population. Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and not related to host country of origin.
Conclusions
The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be components of population-specific genomic differences in key functional pathways.
doi:10.1186/gb-2012-13-1-r2
PMCID: PMC3334583  PMID: 22277159
20.  Locus category based analysis of a large genome-wide association study of rheumatoid arthritis 
Human Molecular Genetics  2010;19(19):3863-3872.
To pinpoint true positive single-nucleotide polymorphism (SNP) associations in a genome-wide association study (GWAS) of rheumatoid arthritis (RA), we categorize genetic loci by external knowledge. We test both the ‘enrichment of associated loci’ in a locus category and the ‘combined association’ of a locus category. The former is quantified by the odds ratio for the presence of SNP associations at the loci of a category, whereas the latter is quantified by the number of loci in a category that have SNP associations. These measures are compared with their expected values as obtained from the permutation of the affection status. To account for linkage disequilibrium (LD) among SNPs, we view each LD block as a genetic locus. Positional candidates were defined as loci implicated by earlier GWAS results, whereas functional candidates were defined by annotations regarding the molecular roles of genes, such as gene ontology categories. As expected, immune-related categories show the largest enrichment signal, although it is not very strong. The intersection of positional and functional candidate information predicts novel RA loci near the genes TEC/TXK, MBL2 and PIK3R1/CD180. Notably, a combined association signal is not only produced by immune-related categories, but also by most other categories and even randomly defined categories. The unspecific quality of these signals limits the possible conclusions from combined association tests. It also reduces the magnitude of enrichment test results. These unspecific signals might result from common variants of small effect and hardly concentrated in candidate categories, or an inflated size of associated regions from weak LD with infrequent mutations.
doi:10.1093/hmg/ddq304
PMCID: PMC2935861  PMID: 20639398
21.  Correction: Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy 
Gorlova, Olga | Martin, Jose-Ezequiel | Rueda, Blanca | Koeleman, Bobby P. C. | Ying, Jun | Teruel, Maria | Diaz-Gallo, Lina-Marcela | Broen, Jasper C. | Vonk, Madelon C. | Simeon, Carmen P. | Alizadeh, Behrooz Z. | Coenen, Marieke J. H. | Voskuyl, Alexandre E. | Schuerwegh, Annemie J. | van Riel, Piet L. C. M. | Vanthuyne, Marie | van 't Slot, Ruben | Italiaander, Annet | Ophoff, Roel A. | Hunzelmann, Nicolas | Fonollosa, Vicente | Ortego-Centeno, Norberto | González-Gay, Miguel A. | García-Hernández, Francisco J. | González-Escribano, María F. | Airo, Paolo | van Laar, Jacob | Worthington, Jane | Hesselstrand, Roger | Smith, Vanessa | de Keyser, Filip | Houssiau, Fredric | Chee, Meng May | Madhok, Rajan | Shiels, Paul G. | Westhovens, Rene | Kreuter, Alexander | de Baere, Elfride | Witte, Torsten | Padyukov, Leonid | Nordin, Annika | Scorza, Raffaella | Lunardi, Claudio | Lie, Benedicte A. | Hoffmann-Vold, Anna-Maria | Palm, Øyvind | García de la Peña, Paloma | Carreira, Patricia | Varga, John | Hinchcliff, Monique | Lee, Annette T. | Gourh, Pravitt | Amos, Christopher I. | Wigley, Frederick M. | Hummers, Laura K. | Nelson, J. Lee | Riemekasten, Gabriella | Herrick, Ariane | Beretta, Lorenzo | Fonseca, Carmen | Denton, Christopher P. | Gregersen, Peter K. | Agarwal, Sandeep | Assassi, Shervin | Tan, Filemon K. | Arnett, Frank C. | Radstake, Timothy R. D. J. | Mayes, Maureen D. | Martin, Javier
PLoS Genetics  2011;7(8):10.1371/annotation/3aeebb2e-64e5-4548-8d65-1f2d5dfeb073.
doi:10.1371/annotation/3aeebb2e-64e5-4548-8d65-1f2d5dfeb073
PMCID: PMC3166261
22.  Correction: Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy 
Gorlova, Olga | Martin, Jose-Ezequiel | Rueda, Blanca | Koeleman, Bobby P. C. | Ying, Jun | Teruel, Maria | Diaz-Gallo, Lina-Marcela | Broen, Jasper C. | Vonk, Madelon C. | Simeon, Carmen P. | Alizadeh, Behrooz Z. | Coenen, Marieke J. H. | Voskuyl, Alexandre E. | Schuerwegh, Annemie J. | van Riel, Piet L. C. M. | Vanthuyne, Marie | van 't Slot, Ruben | Italiaander, Annet | Ophoff, Roel A. | Hunzelmann, Nicolas | Fonollosa, Vicente | Ortego-Centeno, Norberto | González-Gay, Miguel A. | García-Hernández, Francisco J. | González-Escribano, María F. | Airo, Paolo | van Laar, Jacob | Worthington, Jane | Hesselstrand, Roger | Smith, Vanessa | de Keyser, Filip | Houssiau, Fredric | Chee, Meng May | Madhok, Rajan | Shiels, Paul G. | Westhovens, Rene | Kreuter, Alexander | de Baere, Elfride | Witte, Torsten | Padyukov, Leonid | Nordin, Annika | Scorza, Raffaella | Lunardi, Claudio | Lie, Benedicte A. | Hoffmann-Vold, Anna-Maria | Palm, Øyvind | García de la Peña, Paloma | Carreira, Patricia | Varga, John | Hinchcliff, Monique | Lee, Annette T. | Gourh, Pravitt | Amos, Christopher I. | Wigley, Frederick M. | Hummers, Laura K. | Nelson, J. Lee | Riemekasten, Gabriella | Herrick, Ariane | Beretta, Lorenzo | Fonseca, Carmen | Denton, Christopher P. | Gregersen, Peter K. | Agarwal, Sandeep | Assassi, Shervin | Tan, Filemon K. | Arnett, Frank C. | Radstake, Timothy R. D. J. | Mayes, Maureen D. | Martin, Javier
PLoS Genetics  2011;7(8):10.1371/annotation/7a52649c-0942-4bd8-a5d3-3cdacca03cd8.
doi:10.1371/annotation/7a52649c-0942-4bd8-a5d3-3cdacca03cd8
PMCID: PMC3166262
23.  Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis 
Nature genetics  2010;42(8):658-660.
A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 × 10–11, odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 × 10–10, OR = 1.63) and 17q12-21 (P = 1.7 × 10–10, OR = 1.38).
doi:10.1038/ng.627
PMCID: PMC3150510  PMID: 20639880
24.  Refining the association of MHC with multiple sclerosis in African Americans 
Human Molecular Genetics  2010;19(15):3080-3088.
Multiple sclerosis (MS) is a common demyelinating disease of the central nervous system mediated by autoimmune and neurodegenerative pathogenic mechanisms. Multiple genes account for its moderate heritability, but the only genetic region shown to have a large replicable effect on MS susceptibility is the major histocompatibility complex (MHC). Strong linkage disequilibrium (LD) across the MHC has made it difficult to fully characterize individual genetic contributions of this region to MS risk in previous studies. African Americans are at a lower risk for MS when compared with northern Europeans and Americans of European descent, but greater haplotypic diversity and distinct patterns of LD suggest that this population may be particularly informative for fine-mapping efforts. To examine the role of the MHC in African American MS, a case–control association study was performed with 499 African American MS patients and 750 African American controls that were genotyped for 6040 MHC region single nucleotide polymorphisms (SNPs). A replication data set consisting of 451 African American patients and 718 African American controls was genotyped for selected SNPs. Two MHC class II SNPs, rs2647040 and rs3135021, were significant in the replication cohort and partially tagged DRB1*15 alleles. Surprisingly, in comparison to similar studies of individuals of European descent, the MHC seems to play a smaller role in MS susceptibility in African Americans, consistent with pervasive genetic heterogeneity across ancestral groups, and may explain the difference in MS susceptibility between African Americans and individuals of European descent.
doi:10.1093/hmg/ddq197
PMCID: PMC2901136  PMID: 20466734
25.  Plasma carboxypeptidase B downregulates inflammatory responses in autoimmune arthritis 
The Journal of Clinical Investigation  2011;121(9):3517-3527.
The immune and coagulation systems are both implicated in the pathogenesis of rheumatoid arthritis (RA). Plasma carboxypeptidase B (CPB), which is activated by the thrombin/thrombomodulin complex, plays a procoagulant role during fibrin clot formation. However, an antiinflammatory role for CPB is suggested by the recent observation that CPB can cleave proinflammatory mediators, such as C5a, bradykinin, and osteopontin. Here, we show that CPB plays a central role in downregulating C5a-mediated inflammatory responses in autoimmune arthritis. CPB deficiency exacerbated inflammatory arthritis in a mouse model of RA, and cleavage of C5a by CPB suppressed the ability of C5a to recruit immune cells in vivo. In human patients with RA, genotyping of nonsynonymous SNPs in the CPB-encoding gene revealed that the allele encoding a CPB variant with longer half-life was associated with a lower risk of developing radiographically severe RA. Functionally, this CPB variant was more effective at abrogating the proinflammatory properties of C5a. Additionally, expression of both CPB and C5a in synovial fluid was higher in patients with RA than in those with osteoarthritis. These findings suggest that CPB plays a critical role in dampening local, C5a-mediated inflammation and represents a molecular link between inflammation and coagulation in autoimmune arthritis.
doi:10.1172/JCI46387
PMCID: PMC3163960  PMID: 21804193

Results 1-25 (58)