PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (160)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  Genetic variants in Selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics 
Gene  2013;534(1):10.1016/j.gene.2013.10.035.
Context
Insulin resistance is not fully explained on a molecular level, though several genes and proteins have been tied to this defect. Knockdowns of the SEPP1 gene, which encodes the Selenoprotein P (SeP) protein, have been shown to increase insulin sensitivity in mice. SeP is a liver-derived plasma protein and a major supplier of selenium, which is a proposed insulin mimetic and antidiabetic agent.
Objective
SEPP1 single nucleotide polymorphisms (SNPs) were selected for analysis with glucometabolic measures.
Participants and Measures
1424 Hispanics from families in the Insulin Resistance Atherosclerosis Family Study (IRASFS). Additionally, the multi-ethnic Insulin Resistance Atherosclerosis Study was used. A frequently sampled intravenous glucose tolerance test was used to obtain precise measures of acute insulin response (AIR) and the insulin sensitivity index (SI).
Design
21 SEPP1 SNPs (tagging SNPs (n=12) from HapMap, 4 coding variants and 6 SNPs in the promoter region) were genotyped and analyzed for association.
Results
Two highly correlated (r2=1) SNPs showed association with AIR (rs28919926; Cys368Arg; p=0.0028 and rs146125471; Ile293Met; p=0.0026) while rs16872779 (intronic) was associated with fasting insulin levels (p=0.0097). In the smaller IRAS Hispanic cohort, few of the associations seen in the IRASFS were replicated, but meta-analysis of IRASFS and all 3 IRAS cohorts (N= 2446) supported association of rs28919926 and rs146125471 with AIR (p=0.013 and 0.0047, respectively) as well as rs7579 with SI (p=0.047).
Conclusions
Overall, these results in a human sample are consistent with the literature suggesting a role for SEPP1 in insulin resistance.
doi:10.1016/j.gene.2013.10.035
PMCID: PMC3856675  PMID: 24161883
Acute Insulin Response (AIR); Selenium; Selenoproteins; Insulin Resistance; Fibrinogen; Hispanic Americans
2.  Lupus risk variants in the PXK locus alter B-cell receptor internalization 
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
doi:10.3389/fgene.2014.00450
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
3.  Genome-Wide Family-Based Linkage Analysis of Exome Chip Variants and Cardiometabolic Risk 
Genetic epidemiology  2014;38(4):345-352.
Linkage analysis of complex traits has had limited success in identifying trait-influencing loci. Recently, coding variants have been implicated as the basis for some biomedical associations. We tested whether coding variants are the basis for linkage peaks of complex traits in 42 African-American (n = 596) and 90 Hispanic (n = 1,414) families in the Insulin Resistance Atherosclerosis Family Study (IRASFS) using Illumina HumanExome Beadchips. A total of 92,157 variants in African Americans (34%) and 81,559 (31%) in Hispanics were polymorphic and tested using two-point linkage and association analyses with 37 cardiometabolic phenotypes. In African Americans 77 LOD scores greater than 3 were observed. The highest LOD score was 4.91 with the APOE SNP rs7412 (MAF = 0.13) with plasma apolipoprotein B (ApoB). This SNP was associated with ApoB (P-value = 4 × 10−19) and accounted for 16.2% of the variance in African Americans. In Hispanic families, 104 LOD scores were greater than 3. The strongest evidence of linkage (LOD = 4.29) was with rs5882 (MAF = 0.46) in CETP with HDL. CETP variants were strongly associated with HDL (0.00049 < P-value <4.6 × 10−12), accounting for up to 4.5% of the variance. These loci have previously been shown to have effects on the biomedical traits evaluated here. Thus, evidence of strong linkage in this genome wide survey of primarily coding variants was uncommon. Loci with strong evidence of linkage was characterized by large contributions to the variance, and, in these cases, are common variants. Less compelling evidence of linkage and association was observed with additional loci that may require larger family sets to confirm.
doi:10.1002/gepi.21801
PMCID: PMC4281959  PMID: 24719370
Hispanic; African American; genetic variance
4.  End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1 
Objective
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
Methods
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Results
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
Conclusion
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
doi:10.1002/art.38220
PMCID: PMC4002759  PMID: 24504811
5.  Apolipoprotein E, Statins and Risk of Intracerebral Hemorrhage 
Stroke; a journal of cerebral circulation  2013;44(11):10.1161/STROKEAHA.113.001304.
Background and Purpose
Apolipoprotein E (ApoE) genotypes have been associated with lobar intracerebral hemorrhage (ICH). Although HMG-CoA reductase inhibitors (statins) have been associated with an increased risk of ICH, meta-analyses have not consistently shown a statin-induced risk of ICH. Here, we test whether hypercholesterolemia and ApoE polymorphisms affect the risk with ICH by statin use.
Methods
The Genetic and Environmental Risk Factors for Hemorrhagic Stroke study is a prospective, demographically-matched case-control study of ICH. A similar study of ICH, Genetic Risks for Medication-Related Hemorrhagic Stroke study, was used as a replication cohort. Subjects were classified as normocholesterolemia (NC), hypercholesterolemia without statin (HC-NS), and hypercholesterolemia with statin use (HC-S). Statistical comparisons were performed using Fisher’s Exact Test, chi-square tests, and the Breslow-Day test.
Results
The discovery cohort consisted of 558 ICH cases and 1,444 controls, and the replication cohort consisted of 1,020 ICH cases and 382 controls. The association of lower risk for hypercholesterolemia was not attenuated by statin use. Statin use was observed to confer a higher risk for lobar ICH in those carrying ApoE4/E4 and ApoE2/E4 genotypes in both discovery and replication cohorts and combined, showed a trend towards significance (p=0.11 for Statin vs. ApoE4/E4).
Conclusions
Statin use does not appear to attenuate the association of hypercholesterolemia with decreased risk for non-lobar ICH. Our data support a gene-by-drug effect for lobar ICH, but larger sample sizes are needed to confirm the association before any clinical change is warranted.
doi:10.1161/STROKEAHA.113.001304
PMCID: PMC3873717  PMID: 24008570
Intracerebral hemorrhage [7]; Apolipoprotein E; Hypercholesterolemia; Statins; Case control studies [53]; Risk factors in epidemiology [59]
6.  Insulin Sensitivity and Insulin Clearance are Heritable and Have Strong Genetic Correlation in Mexican Americans 
Obesity (Silver Spring, Md.)  2014;22(4):1157-1164.
Objective
We describe the GUARDIAN (Genetics UndeRlying DIAbetes in HispaNics) consortium, along with heritability estimates and genetic and environmental correlations of insulin sensitivity and metabolic clearance rate of insulin (MCRI).
Design and Methods
GUARDIAN is comprised of seven cohorts, consisting of 4336 Mexican-American individuals in 1346 pedigrees. Insulin sensitivity (SI), MCRI, and acute insulin response (AIRg) were measured by frequently sampled intravenous glucose tolerance test in four cohorts. Insulin sensitivity (M, M/I) and MCRI were measured by hyperinsulinemic-euglycemic clamp in three cohorts. Heritability and genetic and environmental correlations were estimated within the family cohorts (totaling 3925 individuals) using variance components.
Results
Across studies, age and gender-adjusted heritability of insulin sensitivity (SI, M, M/I) ranged from 0.23–0.48 and of MCRI from 0.35–0.73. The ranges for the genetic correlations were 0.91 to 0.93 between SI and MCRI; and −0.57 to −0.59 for AIRg and MCRI (all P<0.0001). The ranges for the environmental correlations were 0.54 to 0.74 for SI and MCRI (all P<0.0001); and −0.16 to −0.36 for AIRg and MCRI (P <0.0001−0.06).
Conclusions
These data support a strong familial basis for insulin sensitivity and MCRI in Mexican Americans. The strong genetic correlations between MCRI and SI suggest common genetic determinants.
doi:10.1002/oby.20639
PMCID: PMC3968231  PMID: 24124113
insulin sensitivity; insulin clearance; heritability; genetic correlation; environmental correlation
7.  The Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) Study Protocol 
Stroke; a journal of cerebral circulation  2013;44(10):10.1161/STROKEAHA.113.002332.
Background and Purpose
Epidemiologic studies of intracerebral hemorrhage (ICH) have consistently demonstrated variation in incidence, location, age at presentation, and outcomes among non-Hispanic white, black, and Hispanic populations. We report here the design and methods for this large, prospective, multi-center case-control study of ICH.
Methods
The ERICH study is a multi-center, prospective case-control study of ICH. Cases are identified by hot-pursuit and enrolled using standard phenotype and risk factor information and include neuroimaging and blood sample collection. Controls are centrally identified by random digit dialing to match cases by age (+/−5 years), race, ethnicity, gender and metropolitan region.
Results
As of March 22, 2013, 1,655 cases of ICH had been recruited into the study which is 101.5% of the target for that date and 851 controls had been recruited which is 67.2% of the target for that date (1,267 controls) for a total of 2,506 subjects which is 86.5% of the target for that date (2,897 subjects). Of the 1,655 cases enrolled, 1,640 cases had the case interview entered into the database of which 628 (38%) were non-Hispanic black, 458 (28%) were non-Hispanic white and 554 (34%) were Hispanic. Of the 1,197 cases with imaging submitted, 876 (73.2%) had a 24 hour follow-up CT available In addition to CT imaging, 607 cases have had MRI evaluation.
Conclusion
The ERICH study is a large, case-control study of ICH with particular emphasis on recruitment of minority populations for the identification of genetic and epidemiologic risk factors for ICH and outcomes after ICH.
doi:10.1161/STROKEAHA.113.002332
PMCID: PMC3873723  PMID: 24021679
Stroke; Intracerebral Hemorrhage; Risk Factors; Hypertension; Minorities; Genetics; Genomics
9.  Bootstrap Aggregating of Alternating Decision Trees to Detect Sets of SNPs that Associate with Disease 
Genetic epidemiology  2012;36(2):99-106.
Complex genetic disorders are a result of a combination of genetic and non-genetic factors, all potentially interacting. Machine learning methods hold the potential to identify multi-locus and environmental associations thought to drive complex genetic traits. Decision trees, a popular machine learning technique, offer a computationally low complexity algorithm capable of detecting associated sets of SNPs of arbitrary size, including modern genome-wide SNP scans. However, interpretation of the importance of an individual SNP within these trees can present challenges.
We present a new decision tree algorithm denoted as Bagged Alternating Decision Trees (BADTrees) that is based on identifying common structural elements in a bootstrapped set of ADTrees. The algorithm is order nk2, where n is the number of SNPs considered and k is the number of SNPs in the tree constructed. Our simulation study suggests that BADTrees have higher power and lower type I error rates than ADTrees alone and comparable power with lower type I error rates compared to logistic regression. We illustrate the application of these data using simulated data as well as from the Lupus Large Association Study 1 (7822 SNPs in 3548 individuals). Our results suggest that BADTrees holds promise as a low computational order algorithm for detecting complex combinations of SNP and environmental factors associated with disease.
doi:10.1002/gepi.21608
PMCID: PMC3769952  PMID: 22851473
Machine Learning; Genetic Association; Gene-Gene Interaction; Multi-locus Models
10.  Characterization of European-ancestry NAFLD-Associated Variants in Individuals of African and Hispanic Descent 
Hepatology (Baltimore, Md.)  2013;58(3):966-975.
Nonalcoholic Fatty Liver Disease (NAFLD) is an obesity-related condition affecting over 50% of individuals in some populations and is expected to become the number one cause of liver disease worldwide by 2020. Common, robustly associated genetic variants in/near five genes were identified for hepatic steatosis, a quantifiable component of NAFLD, in European-ancestry individuals. Here we tested whether these variants were associated with hepatic steatosis in African and/or Hispanic Americans and fine-mapped the observed association signals. We measured hepatic steatosis using computed tomography in five African-American (n=3124) and one Hispanic-American (n=849) cohorts. All analyses controlled for variation in age, age2, gender, alcoholic drinks, and population substructure. Heritability of hepatic steatosis was estimated in three cohorts. Variants in/near PNPLA3, NCAN, LYPLAL1, GCKR, and PPP1R3B were tested for association with hepatic steatosis using a regression framework in each cohort and meta-analyzed. Fine-mapping across African-American cohorts was conducted using meta-analysis. African- and Hispanic-American cohorts were 33.9/37.5% male, with average age of 58.6/42.6 years and body mass index of 31.8/28.9kg/m2, respectively. Hepatic steatosis was 0.20–0.34 heritable in African-and Hispanic-American families (p<0.02 in each cohort). Variants in or near PNPLA3, NCAN, GCKR, PPP1R3B in African Americans and PNPLA3 and PPP1R3B in Hispanic Americans were significantly associated with hepatic steatosis; however, allele frequency and effect size varied across ancestries. Fine-mapping in African Americans highlighted missense variants at PNPLA3 and GCKR and redefined the association region at LYPLAL1.
Conclusions
We show for the first time that multiple genetic variants are associated with hepatic steatosis across ancestries and explain a substantial proportion of the genetic predisposition in African and Hispanic Americans. Missense variants in PNPLA3 and GCKR are likely functional across multiple ancestries.
doi:10.1002/hep.26440
PMCID: PMC3782998  PMID: 23564467
liver steatosis; single nucleotide polymorphisms; obesity; meta-analysis; genetic variance
11.  Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes 
Ng, Maggie C. Y. | Shriner, Daniel | Chen, Brian H. | Li, Jiang | Chen, Wei-Min | Guo, Xiuqing | Liu, Jiankang | Bielinski, Suzette J. | Yanek, Lisa R. | Nalls, Michael A. | Comeau, Mary E. | Rasmussen-Torvik, Laura J. | Jensen, Richard A. | Evans, Daniel S. | Sun, Yan V. | An, Ping | Patel, Sanjay R. | Lu, Yingchang | Long, Jirong | Armstrong, Loren L. | Wagenknecht, Lynne | Yang, Lingyao | Snively, Beverly M. | Palmer, Nicholette D. | Mudgal, Poorva | Langefeld, Carl D. | Keene, Keith L. | Freedman, Barry I. | Mychaleckyj, Josyf C. | Nayak, Uma | Raffel, Leslie J. | Goodarzi, Mark O. | Chen, Y-D Ida | Taylor, Herman A. | Correa, Adolfo | Sims, Mario | Couper, David | Pankow, James S. | Boerwinkle, Eric | Adeyemo, Adebowale | Doumatey, Ayo | Chen, Guanjie | Mathias, Rasika A. | Vaidya, Dhananjay | Singleton, Andrew B. | Zonderman, Alan B. | Igo, Robert P. | Sedor, John R. | Kabagambe, Edmond K. | Siscovick, David S. | McKnight, Barbara | Rice, Kenneth | Liu, Yongmei | Hsueh, Wen-Chi | Zhao, Wei | Bielak, Lawrence F. | Kraja, Aldi | Province, Michael A. | Bottinger, Erwin P. | Gottesman, Omri | Cai, Qiuyin | Zheng, Wei | Blot, William J. | Lowe, William L. | Pacheco, Jennifer A. | Crawford, Dana C. | Grundberg, Elin | Rich, Stephen S. | Hayes, M. Geoffrey | Shu, Xiao-Ou | Loos, Ruth J. F. | Borecki, Ingrid B. | Peyser, Patricia A. | Cummings, Steven R. | Psaty, Bruce M. | Fornage, Myriam | Iyengar, Sudha K. | Evans, Michele K. | Becker, Diane M. | Kao, W. H. Linda | Wilson, James G. | Rotter, Jerome I. | Sale, Michèle M. | Liu, Simin | Rotimi, Charles N. | Bowden, Donald W.
PLoS Genetics  2014;10(8):e1004517.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94
Author Summary
Despite the higher prevalence of type 2 diabetes (T2D) in African Americans than in Europeans, recent genome-wide association studies (GWAS) were examined primarily in individuals of European ancestry. In this study, we performed meta-analysis of 17 GWAS in 8,284 cases and 15,543 controls to explore the genetic architecture of T2D in African Americans. Following replication in additional 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry, we identified two novel and three previous reported T2D loci reaching genome-wide significance. We also examined 158 loci previously reported to be associated with T2D or regulating glucose homeostasis. While 56% of these loci were shared between African Americans and the other populations, the strongest associations in African Americans are often found in nearby single nucleotide polymorphisms (SNPs) instead of the original SNPs reported in other populations due to differential genetic architecture across populations. Our results highlight the importance of performing genetic studies in non-European populations to fine map the causal genetic variants.
doi:10.1371/journal.pgen.1004517
PMCID: PMC4125087  PMID: 25102180
Atherosclerosis  2013;229(1):155-160.
Objective
A negative relationship between total bilirubin concentration (TBili) and CVD risk has been documented in a series of epidemiological studies. In addition, TBili is thought to be under strong genetic regulation via the UGT1A gene family, suggesting it may be a heritable CVD risk factor. However, few studies directly relate TBili-associated UGT1A variants to CVD severity or outcome. This study replicated the genetic association for TBili in the Diabetes Heart Study (DHS), and examined the relationships of TBili-associated SNPs with measures of subclinical CVD and mortality.
Methods
This investigation included 1220 self-described European American (EA) individuals from the DHS, a family-based study examining risk for macrovascular complications in type 2 diabetes (T2D). Genetic associations with TBili were examined using the Affymetrix Genome-wide Human SNP Array 5.0 and the Illumina Infinium Human Exome beadchip v1.0. Subsequent analyses assessed the relationships of the top TBili-associated SNPs with measures of vascular calcified plaque and mortality.
Results
A genome-wide association study (GWAS) detected 18 SNPs within the UGT1A gene family associated with TBili at p<5×10-8. The top hit was rs887829 (p=8.67×10-20). There was no compelling evidence of association between the top TBili-associated SNPs and vascular calcified plaque (p=0.05-0.88). There was, however, evidence of association with all-cause mortality (p=0.0004-0.06), the top hit being rs2741034.
Conclusion
These findings support a potential role for UGT1A genetic variants in risk for mortality in T2D. Further quantification of the extent of CVD risk conferred by UGT1A gene family variants in a high risk cohort with T2D is still required.
doi:10.1016/j.atherosclerosis.2013.04.008
PMCID: PMC3691283  PMID: 23642732
bilirubin; genetics; cardiovascular disease; vascular calcified plaque
Acta diabetologica  2012;50(3):391-399.
Selenoprotein S (SelS), has previously been associated with a range of inflammatory markers, particularly in the context of cardiovascular disease (CVD). The aim of this study was to examine the role of SELS genetic variants in risk for subclinical CVD and mortality in individuals with type 2 diabetes mellitus (T2DM). The association between 10 polymorphisms tagging SELS and coronary (CAC), carotid (CarCP) and abdominal-aortic calcified plaque (AACP), carotid intima media thickness (IMT) and other known CVD risk factors was examined in 1220 European Americans from the family-based Diabetes Heart Study. The strongest evidence of association for SELS SNPs was observed for CarCP; rs28665122 (5′ region; β=0.329, p=0.044), rs4965814 (intron 5; β=0.329, p=0.036), rs28628459 (3′ region; β=0.331, p=0.039) and rs7178239 (downstream; β=0.375, p=0.016) were all associated. In addition, rs12917258 (intron 5) was associated with CAC (β =−0.230, p=0.032) and rs4965814, rs28628459 and rs9806366 were all associated with self reported history of prior CVD (p=0.020–0.043). These results suggest a potential role for the SELS region in the development subclinical CVD in this sample enriched for T2DM. Further understanding the mechanisms underpinning these relationships may prove important in predicting and managing CVD complications in T2DM.
doi:10.1007/s00592-012-0440-z
PMCID: PMC3597768  PMID: 23161441
genetics; atherosclerosis; calcified plaque; diabetes mellitus
Obesity (Silver Spring, Md.)  2013;21(12):10.1002/oby.20419.
Objective
Adiponectin is an adipocytokine that has been implicated in a variety of metabolic disorders, including T2D and cardiovascular disease. Studies evaluating genetic variants in ADIPOQ have been contradictory when testing association with T2D in different ethnic groups.
Design and Methods
In this study, 18 SNPs in ADIPOQ were tested for association with plasma adiponectin levels and diabetes status. SNPs were examined in two independent African-American cohorts (nmax=1116) from the Insulin Resistance Atherosclerosis Family Study (IRASFS) and the African American-Diabetes Heart Study (AA-DHS).
Results
Five polymorphisms were nominally associated with plasma adiponectin levels in the meta-analysis (p=0.035–1.02x10−6) including a low frequency arginine to cysteine mutation (R55C) which reduced plasma adiponectin levels to <15% of the mean. Variants were then tested for association with T2D in a meta-analysis of these and the Wake Forest T2D Case-Control study (n=3233 T2D, 2645 non-T2D). Association with T2D was not observed (p≥0.08), suggesting limited influence of ADIPOQ variants on T2D risk.
Conclusions
Despite identification of variants associated with adiponectin levels, a detailed genetic analysis of ADIPOQ revealed no association with T2D risk. This puts into question the role of adiponectin in T2D pathogenesis: whether low adiponectin levels are truly causal for or rather a consequence.
doi:10.1002/oby.20419
PMCID: PMC3690163  PMID: 23512866
Kidney international  2013;84(6):10.1038/ki.2013.173.
Individuals with HIV infection and two apolipoprotein L1 gene (APOL1) risk variants frequently develop nephropathy. Here we tested whether non-HIV viral infections influence nephropathy risk via interactions with APOL1 by assessing APOL1 genotypes and presence of urine JC and BK polyoma virus and plasma HHV6 and CMV by quantitative polymerase chain reaction. We analyzed 300 samples from unrelated and related first-degree relatives of African Americans with non-diabetic nephropathy using linear and non-linear mixed models to account for familial relationships. The four groups evaluated were APOL1 0/1 versus 2 risk alleles, with or without nephropathy. Urine JCV and BKV were detected in 90 and 29 patients while HHV6 and CMV were rare. Adjusting for family age at nephropathy, gender and ancestry, presence of JCV genomic DNA in urine and APOL1 risk alleles were significantly negatively associated with elevated serum cystatin C, albuminuria (albumin to creatinine ratio over 30 mg/g), and kidney disease defined as an eGFR under 60 ml/min per 1.73 m2 and/or albuminuria in an additive (APOL1 plus JCV) model. BK viruria was not associated with kidney disease. Thus, African Americans at increased risk for APOL1-associated nephropathy (two APOL1 risk variants) with JC viruria had a lower prevalence of kidney disease, suggesting that JCV interaction with APOL1 genotype may influence kidney disease risk.
doi:10.1038/ki.2013.173
PMCID: PMC3844025  PMID: 23677244
APOL1; BK polyomavirus; HIV; JC polyomavirus; kidney disease; proteinuria
Ethnicity & disease  2012;22(1):65-71.
Objective
The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations.
Research Design and Methods
In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined.
Results
Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs 28.35 kg/m2), VAT (126.3 vs 105.5 cm2), and SAT (391.6 vs 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI).
Conclusion
Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences. (Ethn Dis. 2012;22(1):65–71)
PMCID: PMC4020784  PMID: 22774311
Hispanics; Adiposity; Admixture; Environmental Differences; Social Factors; Behavior; Genetics
Obesity (Silver Spring, Md.)  2009;18(3):555-562.
The IKKβ/NF-κB pathway is known to play an important role in inflammatory response and has also recently been implicated in the process of insulin resistance. We hypothesized that one or more variants in the IκBα gene (NFKBIA) or surrounding untranslated regions would be associated with insulin sensitivity (SI) in Hispanic-American families. We tested for association between 25 single-nucleotide polymorphisms (SNPs) in and near NFKBIA and SI in 981 individuals in 90 Hispanic-American families from the Insulin Resistance Atherosclerosis (IRAS) Family Study. SNP rs1951276 in the 3′ flanking region of NFKBIA was associated with SI in the San Antonio (SA) sample after adjusting for age, gender, and admixture (uncorrected P = 1.69 × 10−5; conservative Bonferroni correction P = 3.38 × 10−4). Subjects with at least one A allele for NFKBIA rs1951276 had ~29% lower SI compared to individuals homozygous for the G allele in the SA sample. Although not statistically significant, the effect was in the same direction in the San Luis Valley (SLV) sample alone (P = 0.348) and was significant in the combined SA and SLV samples (P = 5.37 × 10−4; presence of A allele associated with ~20% lower SI). In SA, when adjusted for subcutaneous adipose tissue area (SAT, cm2), the association was modestly attenuated (P = 1.25 × 10−3), but the association remained highly significant after adjustment for visceral adipose tissue area (VAT, cm2; P = 4.41 × 10−6). These results provide corroborating evidence that the NF-κB/IKKβ pathway may mediate obesity-induced insulin resistance in humans.
doi:10.1038/oby.2009.303
PMCID: PMC3992855  PMID: 19798070
The American journal of cardiology  2013;111(8):1152-1158.
Individuals with type 2 diabetes mellitus (DM) are at increased risk of cardiovascular disease (CVD) and mortality. Beyond traditional CVD risk factors, novel measures reflecting additional aspects of disease pathophysiology, such as biventricular volume (BiVV), may be useful for risk stratification. This study examined the relationship between BiVV and risk for mortality in European Americans with type 2 DM from the Diabetes Heart Study. BiVV was calculated from 771 non-contrast computed tomography scans performed to image coronary artery calcified plaque (CAC). Relationships between BiVV and traditional CVD risk factors were examined. Cox proportional hazards regression was performed to determine risk for mortality (all-cause and CVD-mortality) associated with increasing BiVV. Area under the curve analysis was used to assess BiVV utility in risk prediction models. During 8.4 ± 2.4 years (mean ± SD) of follow-up, 23% of the sample were deceased. In unadjusted analyses, BiVV was significantly associated with increasing body mass index, height, CAC, history of hypertension and prior myocardial infarction (p<0.0001–0.012). BiVV was significantly associated with all-cause (HR: 2.45; CI: 1.06–5.67; p=0.036) and CVD-mortality (HR: 4.36; CI: 1.36–14.03; p=0.014) in models adjusted for other known CVD risk factors. Area under the curve increased from 0.76 to 0.78 (p=0.04) and 0.74 to 0.77 (p=0.02) for all-cause and CVD-mortality on inclusion of BiVV. In conclusion, in the absence of echocardiography or other noninvasive imaging modalities to assess ventricular volumes, or when such methods are contra-indicated, BiVV from computed tomography may be considered as a tool for stratification of high-risk individuals, such as those with type 2 DM.
doi:10.1016/j.amjcard.2012.12.044
PMCID: PMC3618594  PMID: 23351459
cardiovascular disease; heart size; diabetes; risk-prediction
Background
Type 2 diabetes mellitus (T2DM) is a major cardiovascular disease (CVD) risk factor. Identification of genetic risk factors for CVD is important to understand disease risk. Two recent genome-wide association study (GWAS) meta-analyses in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium detected CVD-associated loci.
Methods
Variants identified in CHARGE were tested for association with CVD phenotypes, including vascular calcification, and conventional CVD risk factors, in the Diabetes Heart Study (DHS) (n = 1208; >80% T2DM affected). This included 36 genotyped or imputed single nucleotide polymorphisms (SNPs) from DHS GWAS data. 28 coding SNPs from 14 top CHARGE genes were also identified from exome sequencing resources and genotyped, along with 209 coding variants from the Illumina HumanExome BeadChip genotype data in the DHS were also tested. Genetic risk scores (GRS) were calculated to evaluate the association of combinations of variants with CVD measures.
Results
After correction for multiple comparisons, none of the CHARGE SNPs were associated with vascular calcification (p < 0.0014). Multiple SNPs showed nominal significance with calcification, including rs599839 (PSRC1, p = 0.008), rs646776 (CELSR2, p = 0.01), and rs17398575 (PIK3CG, p = 0.009). Additional COL4A2 and CXCL12 SNPs were nominally associated with all-cause or CVD-cause mortality. Three SNPs were significantly or nominally associated with serum lipids: rs3135506 (Ser19Trp, APOA5) with triglycerides (TG) (p = 5×10−5), LDL (p = 0.00070), and nominally with high density lipoprotein (HDL) (p = 0.0054); rs651821 (5′UTR, APOA5) with increased TGs (p = 0.0008); rs13832449 (splice donor, APOC3) associated with decreased TGs (p = 0.0015). Rs45456595 (CDKN2A, Gly63Arg), rs5128 (APOC3, 3′UTR), and rs72650673 (SH2B3, Glu400Lys) were nominally associated with history of CVD, subclinical CVD, or CVD risk factors (p < 0.010). From the exome chip, rs3750103 (CHN2, His204Arg/His68Arg) with carotid intima-medial thickness (IMT) (p = 3.9×10−5), and rs61937878 (HAL, Val549Met) with infra-renal abdominal aorta CP (AACP) (p = 7.1×10−5). The unweighted GRS containing coronary artery calcified plaque (CAC) SNPs was nominally associated with history of prior CVD (p = 0.033; OR = 1.09). The weighted GRS containing SNPs was associated with CAC and myocardial infarction (MI) was associated with history of MI (p = 0.026; OR = 1.15).
Conclusions
Genetic risk factors for subclinical CVD in the general population (CHARGE) were modestly associated with T2DM-related risk factors and CVD outcomes in the DHS.
doi:10.1186/1475-2840-13-77
PMCID: PMC4021556  PMID: 24725463
Coronary artery calcified plaque; Type 2 diabetes mellitus; Cardiovascular disease; Genetic risk score
This study investigated the association of copy number variants (CNVs) in type 2 diabetes (T2D) and T2D-associated end-stage renal disease (ESRD) in African Americans. Using the Affymetrix 6.0 array, >900,000 CNV probes spanning the genome were interrogated in 965 African Americans with T2D-ESRD and 1029 non-diabetic African American controls. Previously identified and novel CNVs were separately analyzed and were evaluated for insertion/deletion status and then used as predictors in a logistic regression model to test for association. One common CNV insertion on chromosome 1 was significantly associated with T2D-ESRD (p=6.17×10−5, OR=1.63) after multiple comparison correction. This CNV region encompasses the genes AMY2A and AMY2B, which encode amylase isoenzymes produced by the pancreas. Additional common and novel CNVs approaching significance with disease were also detected. These exploratory results require further replication but suggest the involvement of the AMY2A/AMY2B CNV in T2D and/or T2D-ESRD, and indicate that CNVs may contribute to susceptibility for these diseases.
doi:10.4172/1747-0862.1000061
PMCID: PMC3973178  PMID: 24707315
Copy number variation; African Americans; Diabetic nephropathy; End-stage renal disease; Genome-wide association study; Type 2 diabetes
Diabetes  2013;62(3):965-976.
Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10−8). Locus-wide analysis demonstrated significant associations (Pemp < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.
doi:10.2337/db12-0266
PMCID: PMC3581206  PMID: 23193183
PLoS ONE  2014;9(2):e88273.
Type 2 diabetes (T2D)-associated end-stage kidney disease (ESKD) is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA) cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs) in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05
doi:10.1371/journal.pone.0088273
PMCID: PMC3923777  PMID: 24551085
Background
The presence and severity of coronary artery calcified plaque (CAC) differs markedly between individuals of African and European descent, suggesting that admixture mapping (AM) may be informative for identifying genetic variants associated with subclinical cardiovascular disease (CVD).
Methods and Results
AM of CAC was performed in 1,040 unrelated African Americans with type 2 diabetes mellitus from the African American-Diabetes Heart Study (AA-DHS), Multi-Ethnic Study of Atherosclerosis (MESA), and Family Heart Study (FamHS) using the Illumina custom ancestry informative marker (AIM) panel. All cohorts obtained computed tomography scanning of the coronary arteries using identical protocols. For each AIM, the probability of inheriting 0, 1, and 2 copies of a European-derived allele was determined. Linkage analysis was performed by testing for association between each AIM using these probabilities and CAC, accounting for global ancestry, age, gender and study. Markers on 1p32.3 in the GLIS1 gene (rs6663966, LOD=3.7), 1q32.1 near CHIT1 (rs7530895, LOD=3.1), 4q21.2 near PRKG2 (rs1212373, LOD=3.0) and 11q25 in the OPCML gene (rs6590705, LOD=3.4) had statistically significant LOD scores, while markers on 8q22.2 (rs6994682, LOD=2.7), 9p21.2 (rs439314, LOD=2.7), and 13p32.1 (rs7492028, LOD=2.8) manifested suggestive evidence of linkage. These regions were uniformly characterized by higher levels of European ancestry associating with higher levels or odds of CAC. Findings were replicated in 1,350 AAs without diabetes and 2,497 diabetic European Americans from MESA and the Diabetes Heart Study.
Conclusions
Fine mapping these regions will likely identify novel genetic variants that contribute to CAC and clarify racial differences in susceptibility to subclinical CVD.
doi:10.1161/CIRCGENETICS.112.964114
PMCID: PMC3578054  PMID: 23233742
ancestry; cardiovascular disease risk factors; type 2 diabetes; admixture mapping
Autoimmune Diseases  2014;2014:203435.
The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles.
doi:10.1155/2014/203435
PMCID: PMC3920976  PMID: 24587899

Results 1-25 (160)