PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Platelet Activation and Anti-Phospholipid Antibodies Collaborate in the Activation of the Complement System on Platelets in Systemic Lupus Erythematosus 
PLoS ONE  2014;9(6):e99386.
Anti-phospholipid (aPL) antibodies are important contributors to development of thrombosis in patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE). The underlying mechanism of aPL antibody-mediated thrombosis is not fully understood but existing data suggest that platelets and the complement system are key components. Complement activation on platelets is seen in SLE patients, especially in patients with aPL antibodies, and has been related to venous thrombosis and stroke. The aim of this study was to investigate if aPL antibodies could support classical pathway activation on platelets in vitro as well as in SLE patients. Furthermore, we investigated if complement deposition on platelets was associated with vascular events, either arterial or venous, when the data had been adjusted for traditional cardiovascular risk factors. Finally, we analyzed if platelet complement deposition, both C1q and C4d, was specific for SLE. We found that aPL antibodies supported C4d deposition on platelets in vitro as well as in SLE patients (p = 0.001 and p<0.05, respectively). Complement deposition on platelets was increased in SLE patients when compared with healthy individuals (p<0.0001). However, high levels of C4d deposition and a pronounced C1q deposition were also seen in patients with rheumatoid arthritis and systemic sclerosis. In SLE, C4d deposition on platelets was associated with platelet activation, complement consumption, disease activity and venous (OR = 5.3, p = 0.02), but not arterial, thrombosis, observations which were independent of traditional cardiovascular risk factors. In conclusion, several mechanisms operate in SLE to amplify platelet complement deposition, of which aPL antibodies and platelet activation were identified as important contributors in this investigation. Complement deposition on platelets was identified as a marker of venous, but not arterial thrombosis, in SLE patients independently of traditional risk factors and aPL antibodies. Further studies are needed to elucidate the role of complement deposition on platelets in development of venous thrombosis.
doi:10.1371/journal.pone.0099386
PMCID: PMC4055750  PMID: 24922069
2.  Association of STAT4 Polymorphism with Severe Renal Insufficiency in Lupus Nephritis 
PLoS ONE  2013;8(12):e84450.
Lupus nephritis is a cause of significant morbidity in systemic lupus erythematosus (SLE) and its genetic background has not been completely clarified. The aim of this investigation was to analyze single nucleotide polymorphisms (SNPs) for association with lupus nephritis, its severe form proliferative nephritis and renal outcome, in two Swedish cohorts. Cohort I (n = 567 SLE cases, n =  512 controls) was previously genotyped for 5676 SNPs and cohort II (n = 145 SLE cases, n = 619 controls) was genotyped for SNPs in STAT4, IRF5, TNIP1 and BLK.
Case-control and case-only association analyses for patients with lupus nephritis, proliferative nephritis and severe renal insufficiency were performed. In the case-control analysis of cohort I, four highly linked SNPs in STAT4 were associated with lupus nephritis with genome wide significance with p = 3.7×10−9, OR 2.20 for the best SNP rs11889341. Strong signals of association between IRF5 and an HLA-DR3 SNP marker were also detected in the lupus nephritis case versus healthy control analysis (p <0.0001). An additional six genes showed an association with lupus nephritis with p <0.001 (PMS2, TNIP1, CARD11, ITGAM, BLK and IRAK1). In the case-only meta-analysis of the two cohorts, the STAT4 SNP rs7582694 was associated with severe renal insufficiency with p  = 1.6×10−3 and OR 2.22. We conclude that genetic variations in STAT4 predispose to lupus nephritis and a worse outcome with severe renal insufficiency.
doi:10.1371/journal.pone.0084450
PMCID: PMC3873995  PMID: 24386384
3.  Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations 
Recent genome-wide association studies (GWASs) conducted in Asian populations have identified novel risk loci for systemic lupus erythematosus (SLE). Here, we genotyped 10 single-nucleotide polymorphisms (SNPs) in eight such loci and investigated their disease associations in three independent Caucasian SLE case–control cohorts recruited from Sweden, Finland and the United States. The disease associations of the SNPs in ETS1, IKZF1, LRRC18-WDFY4, RASGRP3, SLC15A4, TNIP1 and 16p11.2 were replicated, whereas no solid evidence of association was observed for the 7q11.23 locus in the Caucasian cohorts. SLC15A4 was significantly associated with renal involvement in SLE. The association of TNIP1 was more pronounced in SLE patients with renal and immunological disorder, which is corroborated by two previous studies in Asian cohorts. The effects of all the associated SNPs, either conferring risk for or being protective against SLE, were in the same direction in Caucasians and Asians. The magnitudes of the allelic effects for most of the SNPs were also comparable across different ethnic groups. On the contrary, remarkable differences in allele frequencies between Caucasian and Asian populations were observed for all associated SNPs. In conclusion, most of the novel SLE risk loci identified by GWASs in Asian populations were also associated with SLE in Caucasian populations. We observed both similarities and differences with respect to the effect sizes and risk allele frequencies across ethnicities.
doi:10.1038/ejhg.2012.277
PMCID: PMC3746253  PMID: 23249952
systemic lupus erythematosus; genetic-association study; Asian; Caucasian
4.  Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus 
Introduction
The ability to degrade neutrophil extracellular traps (NETs) is reduced in a subset of patients with systemic lupus erythematosus (SLE). NETs consist of chromatin covered with antimicrobial enzymes and are normally degraded by DNase-I, an enzyme which is known to have reduced activity in SLE. Decreased ability to degrade NETs is associated with disease activity. In the current study we investigated how the ability of serum from SLE patients to degrade NETs varies during the course of SLE as well as what impact this may have for the clinical phenotype of SLE.
Methods
Serum from 69 patients with SLE, included in a prospective study, was taken every 60 days for a median of 784 days. The ability of serum to degrade NETs was determined and associated with clinical parameters occurring before and at the time of sampling, as well as after sampling by using conditional logistic regression.
Results
As many as 41% of all patients in the study showed decreased ability to degrade NETs at least once, but with a median of 20% of all time points. Decreased degradation was associated with manifestations of glomerulonephritis as well as low complement levels and elevated levels of antibodies directed against histones and DNA. Furthermore, the odds ratio for the patient to develop alopecia and fever after an episode of decreased NETs degradation was increased by four to five times compared to normal.
Conclusions
Decreased degradation of NETs is associated with clinical manifestations in SLE and may contribute to disease pathogenesis. Potential therapeutics restoring the ability to degrade NETs could be beneficial for certain patients with SLE.
doi:10.1186/ar4264
PMCID: PMC3978901  PMID: 23945056
Systemic lupus erythematosus; neutrophil extracellular traps; degradation; glomerulonephritis; prospective study
5.  Factor H autoantibodies and deletion of Complement Factor H-Related protein-1 in rheumatic diseases in comparison to atypical hemolytic uremic syndrome 
Arthritis Research & Therapy  2012;14(4):R185.
Introduction
Complement activation is involved in rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and atypical hemolytic uremic syndrome (aHUS). Autoantibodies to complement inhibitor factor H (FH), particularly in association with deletions of the gene coding for FH-related protein 1 (CFHR1), are associated with aHUS.
Methods
Autoantibodies against FH, factor I (FI) and C4b-binding protein (C4BP) were measured by ELISA, while CFHR1 homozygous deletion was determined with Western blotting of sera. Epitopes for FH autoantibodies were mapped using recombinant fragments of FH.
Results
FH autoantibodies were detected in SLE (6.7%, n = 60, RA patients (16.5%, n = 97 in the Swedish cohort and 9.2%, n = 217 in the Dutch cohort) and thrombosis patients positive for the lupus anticoagulants (LA+) test (9.4%, n = 64) compared with aHUS patients (11.7%, n = 103). In the control groups (n = 354), an average of 4% of individuals were positive for FH autoantibodies. The frequencies observed in both RA cohorts and LA+ patients were statistically significantly higher than in controls. We also found that an average of 15.2% of the FH-autoantibody positive individuals in all studied disease groups had homozygous deficiency of CFHR1 compared with 3.8% of the FH autoantibody negative patients. The levels of FH autoantibodies varied in individual patients over time. FH autoantibodies found in LA+, SLE and RA were directed against several epitopes across FH in contrast to those found in aHUS, which bound mainly to the C-terminus. Autoantibodies against FI and C4BP were detected in some patients and controls but they were not associated with any of the diseases analyzed in this study.
Conclusions
Autoantibodies against FH are not specific for aHUS but are present at a significant frequency in rheumatic diseases where they could be involved in pathophysiological mechanisms.
doi:10.1186/ar4016
PMCID: PMC3580581  PMID: 22894814
6.  Mutations in genes encoding complement inhibitors CD46 and CFH affect the age at nephritis onset in patients with systemic lupus erythematosus 
Arthritis Research & Therapy  2011;13(6):R206.
Introduction
Inherited deficiencies of several complement components strongly predispose to systemic lupus erythematosus (SLE) while deficiencies of complement inhibitors are found in kidney diseases such as atypical hemolytic uremic syndrome (aHUS).
Methods
The exons of complement inhibitor genes CD46 and CFH (factor H) were fully sequenced using the Sanger method in SLE patients with nephritis originating from two cohorts from southern and mid Sweden (n = 196). All identified mutations and polymorphisms were then analyzed in SLE patients without nephritis (n = 326) and in healthy controls (n = 523).
Results
We found nonsynonymous, heterozygous mutations in CFH in 6.1% patients with nephritis, in comparison with 4.0% and 5.4% in patients without nephritis and controls, respectively. No associations of SLE or nephritis with common variants in CFH (V62I/Y402H/E936D) were found. Furthermore, we found two nonsynonymous heterozygous mutations in CD46 in SLE patients but not in controls. The A353V polymorphism, known to affect function of CD46, was found in 6.6% of nephritis patients versus 4.9% and 6.1% of the non-nephritis SLE patients and controls. The presence of mutations in CD46 and CFH did not predispose to SLE or nephritis but was associated with earlier onset of nephritis. Furthermore, we found weak indications that there is one protective and one risk haplotype predisposing to nephritis composed of several polymorphisms in noncoding regions of CD46, which were previously implicated in aHUS.
Conclusions
SLE nephritis is not associated with frequent mutations in CFH and CD46 as found in aHUS but these may be modifying factors causing earlier onset of nephritis.
doi:10.1186/ar3539
PMCID: PMC3334659  PMID: 22171659
7.  Increased plasma levels of the soluble Mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis 
Introduction
Mer and Tyro3 are receptor tyrosine kinases important for the phagocytosis of apoptotic cells. Together with Axl, they constitute the TAM receptor family. These receptors can be shed from the cell membrane and their soluble extracellular regions can be found in plasma. The objective of this study was to elucidate whether the plasma levels of soluble Mer (sMer) and Tyro3 (sTyro3) were increased in systemic lupus erythematosis (SLE), rheumatoid arthritis (RA), or critical limb ischemia (CLI).
Methods
ELISA kits were used to test plasma concentrations in controls and in patients with SLE, RA or CLI.
Results
Increased levels of, in particular, sMer and, to some extent, sTyro3, were found in patients with SLE or RA, but not in patients with CLI. Patients with SLE demonstrated the highest sMer levels and there was a strong correlation to higher SLE disease activity score (SLEDAI). In contrast, in patients with RA, the sMer levels did not correlate with the disease activity score (DAS). In SLE, sMer levels were particularly high in those with lupus nephritis, patients who also had decreased C1q levels and increased titers of anti-DNA antibodies. After therapy, the plasma concentrations of sMer decreased in parallel to the decrease in SLEDAI score.
Conclusions
The plasma concentrations of sMer and sTyro3 were significantly increased in patients with active SLE and RA, suggesting the TAM receptor shedding was affected by these autoimmune diseases. In particular, sMer was increased in SLE, the plasma levels of sMer reflecting disease activity.
doi:10.1186/ar3316
PMCID: PMC3132057  PMID: 21496228
8.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
doi:10.1038/ejhg.2010.197
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
9.  Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus 
Rheumatology (Oxford, England)  2011;50(6):1064-1069.
Objectives. SLE is a systemic autoimmune disease with an annual incidence of 3.8 per 100 000. Several pathogenic mechanisms are believed to be operating in SLE, including an impaired clearance of apoptotic cells, activation of the type I IFN pathway and generation of autoimmune leucocytes. Growth arrest-specific protein 6 (Gas6) and its receptor Axl are known to regulate inflammation and may be implicated in lupus pathogenesis. We have recently developed immunological methods to quantify the vitamin-K-dependent protein Gas6 and its soluble receptor sAxl in human plasma, which we have used to investigate the role of Gas6 and soluble Axl in SLE.
Methods. We have investigated the relation between the plasma concentrations of Gas6 and sAxl and disease activity and specific symptoms in 96 SLE patients.
Results. Gas6 and sAxl concentrations correlated with SLEDAI (r = 0.48, P < 0.001 and r = 0.39, P < 0.001, respectively). Furthermore, concentrations of Gas6 and sAxl correlated with ESR and CRP and inversely with haemoglobin levels. Gas6 and sAxl concentrations were significantly higher in patients with anti-DNA antibodies, leucopenia and GN.
Conclusion. The plasma concentrations of Gas6 and sAxl vary with disease activity in SLE, in particular GN, and may have a role in lupus pathogenesis. Furthermore, Gas6 and sAxl may be of use as biomarkers of disease activity.
doi:10.1093/rheumatology/keq459
PMCID: PMC3093930  PMID: 21278074
Systemic lupus erythematosus; Growth arrest-specific protein 6; Axl; Receptor tyrosine kinase; Vitamin K; Inflammation; Autoimmunity
10.  A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus 
Nature genetics  2009;41(11):1228-1233.
Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P ≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
doi:10.1038/ng.468
PMCID: PMC2925843  PMID: 19838195
11.  A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5 
Human Molecular Genetics  2008;17(18):2868-2876.
Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 × 10−8) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 × 10−5). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 × 10−5) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene.
doi:10.1093/hmg/ddn184
PMCID: PMC2525501  PMID: 18579578
12.  Analysis of HLA DR, HLA DQ, C4A, FcγRIIa, FcγRIIIa, MBL, and IL-1Ra allelic variants in Caucasian systemic lupus erythematosus patients suggests an effect of the combined FcγRIIa R/R and IL-1Ra 2/2 genotypes on disease susceptibility 
Arthritis Research & Therapy  2004;6(6):R557-R562.
Dysfunction in various parts of immune defence, such as immune response, immune complex clearance, and inflammation, has an impact on pathogenesis in systemic lupus erythematosus (SLE). We hypothesised that combinations of common variants of genes involved in these immune functions are associated with susceptibility to SLE. The following variants were analysed: HLA DR3, HLA DQ2, C4AQ0, Fcγ receptor IIa (FcγRIIa) genotype R/R, Fcγ receptor IIIa (FcRγIIIa) genotype F/F, mannan-binding lectin (MBL) genotype conferring a low serum concentration of MBL (MBL-low), and interleukin-1 receptor antagonist (IL-1Ra) genotype 2/2. Polymorphisms were analysed in 143 Caucasian patients with SLE and 200 healthy controls. HLA DR3 in SLE patients was in 90% part of the haplotype HLA DR3-DQ2-C4AQ0, which was strongly associated with SLE (odds ratio [OR] 2.8, 95% CI 1.7–4.5). Analysis of combinations of gene variants revealed that the strong association with SLE for HLA DR3-DQ2-C4AQ0 remained after combination with FcγRIIa R/R, FcγRIIIa F/F, and MBL-low (OR>2). Furthermore, the combination of the FcγRIIa R/R and IL-1Ra 2/2 genotypes yielded a strong correlation with SLE (OR 11.8, 95% CI 1.5–95.4). This study demonstrates that certain combinations of gene variants may increase susceptibility to SLE, suggesting this approach for future studies. It also confirms earlier findings regarding the HLA DR3-DQ2-C4AQ0 haplotype.
doi:10.1186/ar1224
PMCID: PMC1064866  PMID: 15535834
Fcγ receptor; HLA; interleukin-1 receptor antagonist; mannan-binding lectin; systemic lupus erythematosus

Results 1-12 (12)