Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Structural Analysis of Respiratory Syncytial Virus Reveals the Position of M2-1 between the Matrix Protein and the Ribonucleoprotein Complex 
Journal of Virology  2014;88(13):7602-7617.
Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family of nonsegmented, negative-sense, single-stranded RNA genome viruses, is a leading cause of lower respiratory tract infections in infants, young children, and the elderly or immunocompromised. There are many open questions regarding the processes that regulate human RSV (hRSV) assembly and budding. Here, using cryo-electron tomography, we identified virus particles that were spherical, filamentous, and asymmetric in structure, all within the same virus preparation. The three particle morphologies maintained a similar organization of the surface glycoproteins, matrix protein (M), M2-1, and the ribonucleoprotein (RNP). RNP filaments were traced in three dimensions (3D), and their total length was calculated. The measurements revealed the inclusion of multiple full-length genome copies per particle. RNP was associated with the membrane whenever the M layer was present. The amount of M coverage ranged from 24% to 86% in the different morphologies. Using fluorescence light microscopy (fLM), direct stochastic optical reconstruction microscopy (dSTORM), and a proximity ligation assay (PLA), we provide evidence illustrating that M2-1 is located between RNP and M in isolated viral particles. In addition, regular spacing of the M2-1 densities was resolved when hRSV viruses were imaged using Zernike phase contrast (ZPC) cryo-electron tomography. Our studies provide a more complete characterization of the hRSV virion structure and substantiation that M and M2-1 regulate virus organization.
IMPORTANCE hRSV is a leading cause of lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. We used cryo-electron tomography and Zernike phase contrast cryo-electron tomography to visualize populations of purified hRSV in 3D. We observed the three distinct morphologies, spherical, filamentous, and asymmetric, which maintained comparable organizational profiles. Depending on the virus morphology examined, the amount of M ranged from 24% to 86%. We complemented the cryo-imaging studies with fluorescence microscopy, dSTORM, and a proximity ligation assay to provide additional evidence that M2-1 is incorporated into viral particles and is positioned between M and RNP. The results highlight the impact of M and M2-1 on the regulation of hRSV organization.
PMCID: PMC4054448  PMID: 24760890
2.  Zernike phase contrast cryo-electron tomography of whole bacterial cells 
Journal of structural biology  2013;185(1):129-133.
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution.
PMCID: PMC4240974  PMID: 24075950
Defocus phase contrast (DPC); Zernike phase contrast (ZPC); cryo-electron tomography (cryo-ET); bacteria; Caulobacter crescentus; Vibrio vulnificus
3.  A type I interferon transcriptional signature precedes autoimmunity in children genetically at-risk of type 1 diabetes 
Diabetes  2014;63(7):2538-2550.
Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and anti-viral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (N=25). Using this predefined set of 225 IFN signature genes, we investigated expression of the signature in cohorts of healthy controls (N=87), T1D patients (N=64) and a large longitudinal birth cohort of children genetically predisposed to T1D (N=109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically-predisposed children prior to the development of autoantibodies (P=0.0012), but not in established T1D patients. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P=0.0064) and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P=0.007), as exemplified by IFIH1, one of the genes in our IFN signature and for which increased expression is a known disease risk factor. These findings identify transient increased expression of type I IFN genes in pre-clinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.
PMCID: PMC4066333  PMID: 24561305
4.  Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus 
Nature genetics  2008;40(9):1062-1064.
The TNFAIP3 (tumor necrosis factor alpha–induced protein 3) gene encodes a ubiquitin editing enzyme, A20, that restricts NF-κB–dependent signaling and prevents inflammation. We show that three independent SNPs in the TNFAIP3 region (rs13192841, rs2230926 and rs6922466) are associated with systemic lupus erythematosus (SLE) among individuals of European ancestry. These findings provide critical links between A20 and the etiology of SLE.
PMCID: PMC3897246  PMID: 19165919
5.  Plasma concentrations of soluble IL-2 receptor α (CD25) are increased in type 1 diabetes and associated with reduced C-peptide levels in young patients 
Diabetologia  2013;57(2):366-372.
Type 1 diabetes is a common autoimmune disease that has genetic and environmental determinants. Variations within the IL2 and IL2RA (also known as CD25) gene regions are associated with disease risk, and variation in expression or function of these proteins is likely to be causal. We aimed to investigate if circulating concentrations of the soluble form of CD25, sCD25, an established marker of immune activation and inflammation, were increased in individuals with type 1 diabetes and if this was associated with the concentration of C-peptide, a measure of insulin production that reflects the degree of autoimmune destruction of the insulin-producing beta cells.
We used immunoassays to measure sCD25 and C-peptide in peripheral blood plasma from patient and control samples.
We identified that sCD25 was increased in patients with type 1 diabetes compared with controls and replicated this result in an independent set of 86 adult patient and 80 age-matched control samples (p = 1.17 × 10−3). In 230 patients under 20 years of age, with median duration-of-disease of 6.1 years, concentrations of sCD25 were negatively associated with C-peptide concentrations (p = 4.8 × 10−3).
The 25% increase in sCD25 in patients, alongside the inverse association between sCD25 and C-peptide, probably reflect the adverse effects of an on-going, actively autoimmune and inflammatory immune system on beta cell function in patients.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3113-8) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3890035  PMID: 24264051
Autoimmune; Blood; Case–control; CD25; C-peptide; IL-2; IL-2RA Immunoassay; Peripheral; sCD25; Soluble cytokine receptor; Type 1 diabetes
6.  Postthymic Expansion in Human CD4 Naive T Cells Defined by Expression of Functional High-Affinity IL-2 Receptors* 
As the thymus involutes with age, the maintenance of peripheral naive T cells in humans becomes strongly dependent on peripheral cell division. However, mechanisms that orchestrate homeostatic division remain unclear. In this study we present evidence that the frequency of naive CD4 T cells that express CD25 (IL-2 receptor α-chain) increases with age on subsets of both CD31+ and CD31− naive CD4 T cells. Analyses of TCR excision circles from sorted subsets indicate that CD25+ naive CD4 T cells have undergone more rounds of homeostatic proliferation than their CD25− counterparts in both the CD31+ and CD31− subsets, indicating that CD25 is a marker of naive CD4 T cells that have preferentially responded to survival signals from self-Ags or cytokines. CD25 expression on CD25− naive CD4 T cells can be induced by IL-7 in vitro in the absence of TCR activation. Although CD25+ naive T cells respond to lower concentrations of IL-2 as compared with their CD25− counterparts, IL-2 responsiveness is further increased in CD31− naive T cells by their expression of the signaling IL-2 receptor β-chain CD122, forming with common γ-chain functional high-affinity IL-2 receptors. CD25 plays a role during activation: CD25+ naive T cells stimulated in an APC-dependent manner were shown to produce increased levels of IL-2 as compared with their CD25− counterparts. This study establishes CD25+ naive CD4 T cells, which are further delineated by CD31 expression, as a major functionally distinct immune cell subset in humans that warrants further characterization in health and disease.
PMCID: PMC3614027  PMID: 23418630
7.  Functional IL6R 358Ala Allele Impairs Classical IL-6 Receptor Signaling and Influences Risk of Diverse Inflammatory Diseases 
PLoS Genetics  2013;9(4):e1003444.
Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10−22) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10−22). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10−7). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant.
Author Summary
Interleukin-6 (IL-6) is a complex cytokine, which plays a critical role in the regulation of inflammatory responses. Genetic variation in the IL-6 receptor gene is associated with the risk of several human diseases with an inflammatory component, including coronary heart disease, rheumatoid arthritis, and asthma. A common non-synonymous single nucleotide polymorphism in this gene (Asp358Ala) has been suggested to be the causal variant in this region by affecting the circulatory concentrations of soluble IL-6R (sIL-6R). In this study we extend the genetic association of this variant to type 1 diabetes and provide evidence that this variant exerts its functional mechanism by regulating the balance between sIL-6R (generated through cleavage of the surface receptor and by alternative splicing of a soluble IL6R isoform) and membrane-bound IL-6R. These data show for the first time that the minor allele of this non-synonymous variant (Ala358) directly controls the surface levels of IL-6R on individual immune cells and that these differences in protein levels translate into a functional impairment in IL-6R signaling. These findings may have implications for clinical trials targeting inflammatory mechanisms involving IL-6R signaling and may provide tools for identifying patients with specific benefit from therapeutic intervention in the IL-6R signaling pathway.
PMCID: PMC3617094  PMID: 23593036
8.  Compensatory T-Cell Regulation in Unaffected Relatives of SLE Patients, and Opposite IL-2/CD25-Mediated Effects Suggested by Coreferentiality Modeling 
PLoS ONE  2012;7(3):e33992.
In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4+CD25bright T-cells that were regularly 70–90% Foxp3+. We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects.
PMCID: PMC3315511  PMID: 22479496
9.  High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency 
PLoS Genetics  2012;8(1):e1002476.
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Author Summary
The human leukocyte antigen (HLA) locus is robustly associated with many immune-mediated conditions. However, identification of the genetic variants contributing to the disease pathophysiology has been greatly hampered by the extensive chromosomal conservation within this genomic region. To better understand the association of the HLA locus in selective IgA deficiency (IgAD), we used an extensive genotyping database from a recent genome-wide association study (GWAS) to generate a high-density SNP map of this region in a combined sample of >2,700 individuals from 3 independent European populations. In addition, we took advantage of recent methodological advances to impute the more common HLA-B, -DRB1, and -DQB1 alleles in all subjects. We confirmed the strong disease-association of the HLA locus and identified several different signals located in specific conserved HLA haplotypes contributing independent risk or protection for IgAD. Further analysis of the chromosomal sequences associated with the associated HLA alleles allowed us to refine the mapping of the susceptibility variants. These findings represent the most comprehensive high-density SNP mapping of the HLA locus in IgAD to date and provide important new information as to the location of the genetic variants contributing to this common immune deficiency.
PMCID: PMC3266887  PMID: 22291608
10.  A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus 
Nature genetics  2009;41(11):1228-1233.
Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P ≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
PMCID: PMC2925843  PMID: 19838195
11.  Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches 
Luminescent bacteria (γ-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria–squid associations.
PMCID: PMC2911791  PMID: 20680094
12.  Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFβ gene variants 
BMC Immunology  2009;10:5.
CD4+CD25+ regulatory T cells play an essential role in maintaining immune homeostasis and preventing autoimmunity. Therefore, defects in Treg development, maintenance or function have been associated with several human autoimmune diseases including Systemic Lupus Erythematosus (SLE), a systemic autoimmune disease characterized by loss of tolerance to nuclear components and significantly more frequent in females.
To investigate the involvement of Treg in SLE pathogenesis, we determined the frequency of CD4+CD25+CD45RO+ T cells, which encompass the majority of Treg activity, in the PBMC of 148 SLE patients (76 patients were part of 54 families), 166 relatives and 117 controls. SLE patients and their relatives were recruited in several Portuguese hospitals and through the Portuguese Lupus Association. Control individuals were blood donors recruited from several regional blood donor centers. Treg frequency was significantly lower in SLE patients than healthy controls (z = -6.161, P < 0.00001) and intermediate in the relatives' group. Remarkably, this T cell subset was also lower in females, most strikingly in the control population (z = 4.121, P < 0.001). We further ascertained that the decreased frequency of Treg in SLE patients resulted from the specific reduction of bona fide FOXP3+CD4+CD25+ Treg. Treg frequency was negatively correlated with SLE activity index (SLEDAI) and titers of serum anti-dsDNA antibodies. Both Treg frequency and disease activity were modulated by IVIg treatment in a documented SLE case. The segregation of Treg frequency within the SLE families was indicative of a genetic trait. Candidate gene analysis revealed that specific variants of CTLA4 and TGFβ were associated with the decreased frequency of Treg in PBMC, while FOXP3 gene variants were associated with affection status, but not with Treg frequency.
SLE patients have impaired Treg production or maintenance, a trait strongly associated with SLE disease activity and autoantibody titers, and possibly resulting from the inability to convert FOXP3+CD25- into FOXP3+CD25+ T cells. Treg frequency is highly heritable within SLE families, with specific variants of the CTLA4 and TGFβ genes contributing to this trait, while FOXP3 contributes to SLE through mechanisms not involving a modulation of Treg frequency. These findings establish that the genetic components in SLE pathogenesis include genes related to Treg generation or maintenance.
PMCID: PMC2656467  PMID: 19173720

Results 1-12 (12)