PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Cui, huiquan")
1.  4-{2-[4-(Dimethyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 3,5-dicarb­oxy­benzene­sulfonate methanol monosolvate 
In the crystal structure of the title solvated salt, C16H19N2 +·C8H5O7S−·CH3OH, the anions and the methanol solvent mol­ecules are linked by O—H⋯O hydrogen bonds. The cations and anions are packed as alternate layers parallel to (11). The crystal structure is further stabilized by a π–π inter­action between the pyridinium and benzene rings of the cations, with a centroid–centroid distance of 3.5492 (4) Å.
doi:10.1107/S1600536811054419
PMCID: PMC3274978  PMID: 22346923
2.  A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus 
PLoS Genetics  2011;7(6):e1002128.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic predisposition, characterized by an upregulated type I interferon pathway. MicroRNAs are important regulators of immune homeostasis, and aberrant microRNA expression has been demonstrated in patients with autoimmune diseases. We recently identified miR-146a as a negative regulator of the interferon pathway and linked the abnormal activation of this pathway to the underexpression of miR-146a in SLE patients. To explore why the expression of miR-146a is reduced in SLE patients, we conducted short parallel sequencing of potentially regulatory regions of miR-146a and identified a novel genetic variant (rs57095329) in the promoter region exhibiting evidence for association with SLE that was replicated independently in 7,182 Asians (Pmeta = 2.74×10−8, odds ratio = 1.29 [1.18–1.40]). The risk-associated G allele was linked to reduced expression of miR-146a in the peripheral blood leukocytes of the controls. Combined functional assays showed that the risk-associated G allele reduced the protein-binding affinity and activity of the promoter compared with those of the promoter containing the protective A allele. Transcription factor Ets-1, encoded by the lupus-susceptibility gene ETS1, identified in recent genome-wide association studies, binds near this variant. The manipulation of Ets-1 levels strongly affected miR-146a promoter activity in vitro; and the knockdown of Ets-1, mimicking its reduced expression in SLE, directly impaired the induction of miR-146a. We also observed additive effects of the risk alleles of miR-146a and ETS1. Our data identified and confirmed an association between a functional promoter variant of miR-146a and SLE. This risk allele had decreased binding to transcription factor Ets-1, contributing to reduced levels of miR-146a in SLE patients.
Author Summary
Genome-wide association studies have identified quite a number of susceptibility loci associated with complex diseases such as systemic lupus erythematosus (SLE). However, for most of them, the intrinsic link between genetic variation and disease mechanism is not fully understood. SLE is characterized by a significantly upregulated type I interferon (IFN) pathway, and we have previously reported that underexpression of a microRNA, miR-146a, contributes to alterations in the type I IFN pathway in lupus patients. Here we identified a novel genetic variant in the promoter region of miR-146a that is directly related to reduced expression of miR-146a and is associated with SLE susceptibility. The risk allele of this variant confers weaker binding affinity for Ets-1, which is a transcription factor encoded by a lupus susceptibility gene found in recent GWAS. These findings suggest that reduced expression of Ets-1 and its reduced binding affinity to the miR-146a promoter both may contribute to low levels of this microRNA in SLE patients, which may contribute to the upregulated type I IFN pathway in these patients. To our knowledge, this is also the first piece of evidence showing association between a genetic variant in a promoter region of a miRNA gene and a human disease.
doi:10.1371/journal.pgen.1002128
PMCID: PMC3128113  PMID: 21738483
3.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
4.  Association of elevated transcript levels of interferon-inducible chemokines with disease activity and organ damage in systemic lupus erythematosus patients 
Arthritis Research & Therapy  2008;10(5):R112.
Introduction
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease with a heterogeneous course and varying degrees of severity and organ damage; thus, there is increasing interest in identifying biomarkers for SLE. In this study we correlated the combined expression level of multiple interferon-inducible chemokines with disease activity, degree of organ damage and clinical features in SLE, and we investigated their roles as biomarkers.
Methods
Peripheral blood cells obtained from 67 patients with SLE patients, 20 patients with rheumatoid arthritis (RA) and 23 healthy donors were subjected to real-time PCR in order to measure the transcriptional levels of seven interferon-inducible chemokines (RANTES, MCP-1, CCL19, MIG, IP-10, CXCL11, and IL-8). The data were used to calculate a chemokine score for each participant, after which comparisons were performed between various groups of SLE patients and control individuals.
Results
Chemokine scores were significantly elevated in SLE patients versus RA patients and healthy donors (P = 0.012 and P = 0.002, respectively). Chemokine scores were correlated positively with SLE Disease Activity Index 2000 scores (P = 0.005) and negatively with C3 levels (P < 0.001). Compared with patients without lupus nephritis and those with inactive lupus nephritis, chemokine scores were elevated in patients with active lupus nephritis, especially when their daily prednisone dosage was under 30 mg (P = 0.002 and P = 0.014, respectively). Elevated chemokine scores were also associated with the presence of cumulative organ damage (Systemic Lupus International Collaborating Clinics/American Society of Rheumatology Damage Index ≥ 1; P = 0.010) and the occurrence of anti-Sm or anti-RNP autoantibodies (both P = 0.021).
Conclusions
The combined transcription level of interferon-inducible chemokines in peripheral blood leucocytes is closely associated with disease activity, degree of organ damage, and specific autoantibody patterns in SLE. The chemokine score may serve as a new biomarker for active and severe disease in SLE.
doi:10.1186/ar2510
PMCID: PMC2592795  PMID: 18793417

Results 1-4 (4)