PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Assessing the Risk of Laboratory-Acquired Meningococcal Disease 
Journal of Clinical Microbiology  2005;43(9):4811-4814.
Neisseria meningitidis is infrequently reported as a laboratory-acquired infection. Prompted by two cases in the United States in 2000, we assessed this risk among laboratorians. We identified cases of meningococcal disease that were possibly acquired or suspected of being acquired in a laboratory by placing an information request on e-mail discussion groups of infectious disease, microbiology, and infection control professional organizations. A probable case of laboratory-acquired meningococcal disease was defined as illness meeting the case definition for meningococcal disease in a laboratorian who had occupational exposure to an N. meningitidis isolate of the same serogroup within 14 days of illness onset. Sixteen cases of probable laboratory-acquired meningococcal disease occurring worldwide between 1985 and 2001 were identified, including six U.S. cases between 1996 and 2000. Nine cases (56%) were serogroup B; seven (44%) were serogroup C. Eight cases (50%) were fatal. All cases occurred among clinical microbiologists. In 15 cases (94%), isolate manipulation was performed without respiratory protection. We estimated that an average of three microbiologists are exposed to the 3,000 meningococcal isolates seen in U.S. laboratories yearly and calculated an attack rate of 13/100,000 microbiologists between 1996 and 2001, compared to 0.2/100,000 among U.S. adults in general. The rate and case/fatality ratio of meningococcal disease among microbiologists are higher than those in the general U.S. population. Specific risk factors for laboratory-acquired infection are likely associated with exposure to droplets or aerosols containing N. meningitidis. Prevention should focus on the implementation of class II biological safety cabinets or additional respiratory protection during manipulation of suspected meningococcal isolates.
doi:10.1128/JCM.43.9.4811-4814.2005
PMCID: PMC1234112  PMID: 16145146
2.  Use of Real-Time PCR To Resolve Slide Agglutination Discrepancies in Serogroup Identification of Neisseria meningitidis 
Journal of Clinical Microbiology  2004;42(1):320-328.
Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia in children and young adults in the United States. Rapid and reliable identification of N. meningitidis serogroups is crucial for judicious and expedient response to cases of meningococcal disease, including decisions about vaccination campaigns. From 1997 to 2002, 1,298 N. meningitidis isolates, collected in the United States through the Active Bacterial Core surveillance (ABCs), were tested by slide agglutination serogrouping (SASG) at both the ABCs sites and the Centers for Disease Control and Prevention (CDC). For over 95% of isolates, SASG results were concordant, while discrepant results were reported for 58 isolates. To resolve these discrepancies, we repeated the SASG in a blinded fashion and employed ctrA and six serogroup-specific PCR assays (SGS-PCR) to determine the genetic capsule type. Seventy-eight percent of discrepancies were resolved, since results of the SGS-PCR and SASG blinded study agreed with each other and confirmed the SASG result at either state health laboratories or CDC. This study demonstrated the ability of SGS-PCR to efficiently resolve SASG discrepancies and identified the main cause of the discrepancies as overreporting of these isolates as nongroupable. It also reemphasized the importance of adherence to quality assurance procedures when performing SASG and prompted prospective monitoring for SASG discrepancies involving isolates collected through ABCs in the United States.
doi:10.1128/JCM.42.1.320-328.2004
PMCID: PMC321732  PMID: 14715772
3.  Serogroup W-135 Meningococcal Disease during the Hajj, 2000 
Emerging Infectious Diseases  2003;9(6):665-671.
An outbreak of serogroup W-135 meningococcal disease occurred during the 2000 Hajj in Saudi Arabia. Disease was reported worldwide in Hajj pilgrims and their close contacts; however, most cases were identified in Saudi Arabia. Trends in Saudi meningococcal disease were evaluated and the epidemiology of Saudi cases from this outbreak described. Saudi national meningococcal disease incidence data for 1990 to 2000 were reviewed; cases from January 24 to June 5, 2000 were retrospectively reviewed. The 2000 Hajj outbreak consisted of distinct serogroup A and serogroup W-135 outbreaks. Of 253 identified cases in Saudi Arabia, 161 (64%) had serogroup identification; serogroups W-135 and A caused 93 (37%) and 60 (24%) cases with attack rates of 9 and 6 cases per 100,000 population, respectively. The 2000 Hajj outbreak was the first large serogroup W-135 meningococcal disease outbreak identified worldwide. Enhanced surveillance for serogroup W-135, especially in Africa, is essential to control this emerging epidemic disease.
doi:10.3201/eid0906.020565
PMCID: PMC3000138  PMID: 12781005
Meningococcal infections; meningitis; meningococcal; Neisseria meningitides; epidemiology; disease outbreaks; Saudi Arabia; Africa; research
4.  Identification of Haemophilus influenzae Serotypes by Standard Slide Agglutination Serotyping and PCR-Based Capsule Typing 
Journal of Clinical Microbiology  2003;41(1):393-396.
To resolve discrepancies in slide agglutination serotyping (SAST) results from state health departments and the Centers for Disease Control and Prevention (CDC), we characterized 141 of 751 invasive Haemophilus influenzae isolates that were identified in the United States from January 1998 to December 1999 through an active, laboratory-based, surveillance program coordinated by the CDC. We found discrepancies between the results of SAST performed at state health departments and those of PCR capsule typing performed at the CDC for 56 (40%) of the isolates characterized: 54 isolates that were identified as a particular serotype by SAST were shown to be unencapsulated by PCR, and two isolates that were reported as serotypes b and f were found to be serotypes f and e, respectively, by PCR. The laboratory error most likely to affect the perceived efficacy of the conjugate H. influenzae type b (Hib) vaccine was the misidentification of isolates as serotype b: of 40 isolates identified as serotype b by SAST, 27 (68%) did not contain the correlating capsule type genes. The frequency of errors fell substantially when standardized reagents and routine quality control of SAST were used during a study involving three laboratories. An overall 94% agreement between SAST and PCR results showed that slide agglutination could be a valid and reliable method for serotyping H. influenzae if the test was performed correctly, in accordance with standardized and recommended procedures. An ongoing prospective analysis of all H. influenzae surveillance isolates associated with invasive disease in children less than 5 years old will provide more accurate national figures for the burden of invasive disease caused by Hib and other H. influenzae serotypes.
doi:10.1128/JCM.41.1.393-396.2003
PMCID: PMC149627  PMID: 12517878
5.  First Case of Bioterrorism-Related Inhalational Anthrax in the United States, Palm Beach County, Florida, 2001 
Emerging Infectious Diseases  2002;8(10):1029-1034.
On October 4, 2001, we confirmed the first bioterrorism-related anthrax case identified in the United States in a resident of Palm Beach County, Florida. Epidemiologic investigation indicated that exposure occurred at the workplace through intentionally contaminated mail. One additional case of inhalational anthrax was identified from the index patient’s workplace. Among 1,076 nasal cultures performed to assess exposure, Bacillus anthracis was isolated from a co-worker later confirmed as being infected, as well as from an asymptomatic mail-handler in the same workplace. Environmental cultures for B. anthracis showed contamination at the workplace and six county postal facilities. Environmental and nasal swab cultures were useful epidemiologic tools that helped direct the investigation towards the infection source and transmission vehicle. We identified 1,114 persons at risk and offered antimicrobial prophylaxis.
doi:10.3201/eid0810.020354
PMCID: PMC2730309  PMID: 12396910
Anthrax; Bacillus anthracis; bioterrorism; nasal swab cultures; environmental cultures
6.  Distribution of Neisseria meningitidis Serogroup B Serosubtypes and Serotypes Circulating in the United States 
Journal of Clinical Microbiology  2000;38(9):3323-3328.
Because the Neisseria meningitidis serogroup B (NMSB) capsule is poorly immunogenic in humans, immunization strategies have focused on noncapsular antigens. Both PorA and to a lesser extent PorB are noncapsular protein antigens capable of inducing protective bactericidal antibodies, and vaccines based on the outer membrane protein (OMP) components of serogroup B meningococci have been shown to be effective in clinical trials. Multiple PorA antigens seem to be needed to prevent endemic meningococcal disease around the world, and a hexavalent PorA-based meningococcal vaccine has recently been developed in The Netherlands. To evaluate the distribution of NMSB PorA and PorB antigens in the United States, serosubtyping and serotyping were done on 444 NMSB strains isolated in the active surveillance areas of the United States (total population, 32 million) during the period 1992 to 1998. A total of 244 strains were isolated from sporadic cases of meningococcal disease, and 200 strains were isolated from an epidemic in Oregon. A panel of 16 mouse monoclonal antibodies reactive with PorA and 15 monoclonal antibodies reactive with PorB were used. Among the NMSB isolates obtained from sporadic cases, the most prevalent serosubtypes were P1.7,16 (14.3%), P1.19,15 (9.8%), P1.7,1 (8.6%), P1.5,2 (7.8%), P1.22a, 14 (7.8%), and P1.14 (5.3%) and the most prevalent serotypes were 4,7 (27.5%), 15 (16%), 14 (8.6%), 10 (6.1%), 1 (4.9%), and 2a (3.7%). A multivalent PorA-based OMP vaccine aimed at the six most prevalent serosubtypes could have targeted about half of the sporadic cases of NMSB disease that occurred between 1992 and 1998 in the surveillance areas. Twenty serosubtypes would have had to be included in a multivalent vaccine to achieve 80% coverage of strains causing sporadic disease. The relatively large number of isolates that did not react with murine monoclonal antibodies indicates that DNA sequence-based variable region typing of NMSB will be necessary to provide precise information on the distribution and diversity of PorA antigens and correlation with nonserosubtypeable isolates. The high degree of variability observed in the PorA and PorB proteins of NMSB in the United States suggests that vaccine strategies not based on OMPs should be further investigated.
PMCID: PMC87381  PMID: 10970378
7.  SARS Surveillance during Emergency Public Health Response, United States, March–July 2003 
Emerging Infectious Diseases  2004;10(2):185-194.
In response to the emergence of severe acute respiratory syndrome (SARS), the United States established national surveillance using a sensitive case definition incorporating clinical, epidemiologic, and laboratory criteria. Of 1,460 unexplained respiratory illnesses reported by state and local health departments to the Centers for Disease Control and Prevention from March 17 to July 30, 2003, a total of 398 (27%) met clinical and epidemiologic SARS case criteria. Of these, 72 (18%) were probable cases with radiographic evidence of pneumonia. Eight (2%) were laboratory-confirmed SARS-coronavirus (SARS-CoV) infections, 206 (52%) were SARS-CoV negative, and 184 (46%) had undetermined SARS-CoV status because of missing convalescent-phase serum specimens. Thirty-one percent (124/398) of case-patients were hospitalized; none died. Travel was the most common epidemiologic link (329/398, 83%), and mainland China was the affected area most commonly visited. One case of possible household transmission was reported, and no laboratory-confirmed infections occurred among healthcare workers. Successes and limitations of this emergency surveillance can guide preparations for future outbreaks of SARS or respiratory diseases of unknown etiology.
doi:10.3201/eid1002.030752
PMCID: PMC3322912  PMID: 15030681
severe acute respiratory syndrome; United States; surveillance; incidence; SARS virus; Coronaviridae; pneumonia; travel; respiratory tract infections

Results 1-7 (7)