Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans 
Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7, r2 = 0.86, P < 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at under registration no. NCT00119067.)
PMCID: PMC4820509  PMID: 26865594
2.  Antitoxin Treatment of Inhalation Anthrax: A Systematic Review 
Health security  2015;13(6):365-377.
Concern about use of anthrax as a bioweapon prompted development of novel anthrax antitoxins for treatment. Clinical guidelines for the treatment of anthrax recommend antitoxin therapy in combination with intravenous antimicrobials; however, a large-scale or mass anthrax incident may exceed antitoxin availability and create a need for judicious antitoxin use. We conducted a systematic review of antitoxin treatment of inhalation anthrax in humans and experimental animals to inform antitoxin recommendations during a large-scale or mass anthrax incident. A comprehensive search of 11 databases and the FDA website was conducted to identify relevant animal studies and human reports: 28 animal studies and 3 human cases were identified. Antitoxin monotherapy at or shortly after symptom onset demonstrates increased survival compared to no treatment in animals. With early treatment, survival did not differ between antimicrobial monotherapy and antimicrobial-antitoxin therapy in nonhuman primates and rabbits. With delayed treatment, antitoxin-antimicrobial treatment increased rabbit survival. Among human cases, addition of antitoxin to combination antimicrobial treatment was associated with survival in 2 of the 3 cases treated. Despite the paucity of human data, limited animal data suggest that adjunctive antitoxin therapy may improve survival. Delayed treatment studies suggest improved survival with combined antitoxin-antimicrobial therapy, although a survival difference compared with antimicrobial therapy alone was not demonstrated statistically. In a mass anthrax incident with limited antitoxin supplies, antitoxin treatment of individuals who have not demonstrated a clinical benefit from antimicrobials, or those who present with more severe illness, may be warranted. Additional pathophysiology studies are needed, and a point-of-care assay correlating toxin levels with clinical status may provide important information to guide antitoxin use during a large-scale anthrax incident.
PMCID: PMC4710135  PMID: 26690378
3.  Epidemiology of Pertussis Among Young Pakistani Infants: A Community-Based Prospective Surveillance Study 
Background. Pertussis remains a cause of morbidity and mortality among young infants. There are limited data on the pertussis disease burden in this age group from low- and lower-middle-income countries, including in South Asia.
Methods. We conducted an active community-based surveillance study from February 2015 to April 2016 among 2 cohorts of young infants in 4 low-income settlements in Karachi, Pakistan. Infants were enrolled either at birth (closed cohort) or at ages up to 10 weeks (open cohort) and followed until 18 weeks of age. Nasopharyngeal swab specimens were obtained from infants who met a standardized syndromic case definition and tested for Bordetella pertussis using real-time polymerase chain reaction. We determined the incidence of pertussis using a protocol-defined case definition, as well as the US Centers for Disease Control and Prevention (CDC) definitions for confirmed and probable pertussis.
Results. Of 2021 infants enrolled into the study, 8 infants met the protocol-defined pertussis case definition, for an incidence of 3.96 (95% confidence interval [CI], 1.84–7.50) cases per 1000 infants. Seven of the pertussis cases met the CDC pertussis case definition (5 confirmed, 2 probable), for incidences of CDC-defined confirmed pertussis of 2.47 (95% CI, .90–5.48) cases per 1000 infants, and probable pertussis of 0.99 (95% CI, .17–3.27) cases per 1000 infants. Three of the pertussis cases were severe according to the Modified Preziosi Scale score.
Conclusions. In one of the first prospective surveillance studies of infant pertussis in a developing country, we identified a moderate burden of pertussis disease in early infancy in Pakistan.
PMCID: PMC5106628  PMID: 27838667
pertussis; maternal vaccine; Tdap; Pakistan; surveillance
4.  Comprehensive Analysis and Selection of Anthrax Vaccine Adsorbed Immune Correlates of Protection in Rhesus Macaques 
Clinical and Vaccine Immunology : CVI  2014;21(11):1512-1520.
Humoral and cell-mediated immune correlates of protection (COP) for inhalation anthrax in a rhesus macaque (Macaca mulatta) model were determined. The immunological and survival data were from 114 vaccinated and 23 control animals exposed to Bacillus anthracis spores at 12, 30, or 52 months after the first vaccination. The vaccinated animals received a 3-dose intramuscular priming series (3-i.m.) of anthrax vaccine adsorbed (AVA) (BioThrax) at 0, 1, and 6 months. The immune responses were modulated by administering a range of vaccine dilutions. Together with the vaccine dilution dose and interval between the first vaccination and challenge, each of 80 immune response variables to anthrax toxin protective antigen (PA) at every available study time point was analyzed as a potential COP by logistic regression penalized by least absolute shrinkage and selection operator (LASSO) or elastic net. The anti-PA IgG level at the last available time point before challenge (last) and lymphocyte stimulation index (SI) at months 2 and 6 were identified consistently as a COP. Anti-PA IgG levels and lethal toxin neutralization activity (TNA) at months 6 and 7 (peak) and the frequency of gamma interferon (IFN-γ)-secreting cells at month 6 also had statistically significant positive correlations with survival. The ratio of interleukin 4 (IL-4) mRNA to IFN-γ mRNA at month 6 also had a statistically significant negative correlation with survival. TNA had lower accuracy as a COP than did anti-PA IgG response. Following the 3-i.m. priming with AVA, the anti-PA IgG responses at the time of exposure or at month 7 were practicable and accurate metrics for correlating vaccine-induced immunity with protection against inhalation anthrax.
PMCID: PMC4248764  PMID: 25185577
5.  Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar 
PLoS ONE  2016;11(6):e0156987.
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.
PMCID: PMC4892579  PMID: 27257909
6.  Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: a protective neutralizing epitope from Bacillus anthracis protective antigen 
Vaccine  2015;33(20):2342-2346.
Epitope-focused immunogens can elicit antibody against the loop neutralizing determinant (LND), a neutralizing epitope found within the 2β2-2β3 loop of protective antigen (PA), which can protect rabbits from high-dose inhalation challenge with Bacillus anthracis Ames strain. Interestingly, data suggests that this epitope is relatively immunosilent in rabbits and non-human primates immunized with full length PA.
To determine whether the LND is immunosilent among humans vaccinated with PA, we screened antisera from AVA- or placebo-vaccinees from a clinical trial for antibody reactive with the LND.
AVA-vaccinee sera had significant PA-specific antibody compared to placebo-vaccinee sera; however, sera from the two cohorts were indistinguishable with regard to the frequency of individuals with antibody specific for the LND.
AVA-vaccinees have a low frequency of antibody reactive with the LND. As with rabbits and non-human primates, the elicitation of LND-specific antibody in humans appears to require immunization with an epitope-focused vaccine.
PMCID: PMC4519083  PMID: 25820066
AVA; epitope; vaccine; protective antigen; antibody
7.  A Three-Dose Intramuscular Injection Schedule of Anthrax Vaccine Adsorbed Generates Sustained Humoral and Cellular Immune Responses to Protective Antigen and Provides Long-Term Protection against Inhalation Anthrax in Rhesus Macaques 
Clinical and Vaccine Immunology : CVI  2012;19(11):1730-1745.
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r2 = 0.89 for log10-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4+ cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.
PMCID: PMC3491539  PMID: 22933399
8.  Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence ◊ 
Inhalation anthrax is a rare but acute infectious disease following adsorption of Bacillus anthracis spores through the lungs. The disease has a high fatality rate if untreated, but early and correct diagnosis has a significant impact on case patient recovery. The early symptoms of inhalation anthrax are, however, non-specific and current anthrax diagnostics are primarily dependent upon culture and confirmatory real-time PCR. Consequently, there may be a significant delay in diagnosis and targeted treatment. Rapid, culture-independent diagnostic tests are therefore needed, particularly in the context of a large scale emergency response.
The aim of this study was to evaluate the ability of monoclonal antibodies to detect anthrax toxin proteins that are secreted early in the course of B. anthracis infection using a time-resolved fluorescence (TRF) immunoassay. We selected monoclonal antibodies that could detect protective antigen (PA), as PA83 and also PA63 and LF in the lethal toxin complex. The assay reliable detection limit (RDL) was 6.63 × 10−6 μM (0.551 ng/ml) for PA83 and 2.51 × 10−5 μM (1.58 ng/ml) for PA63. Despite variable precision and accuracy of the assay, PA was detected in 9 out of 10 sera samples from anthrax confirmed case patients with cutaneous (n=7), inhalation (n=2), and gastrointestinal (n=1) disease. Anthrax Immune Globulin (AIG), which has been used in treatment of clinical anthrax, interfered with detection of PA. This study demonstrates a culture-independent method of diagnosing anthrax through use of monoclonal antibodies to detect PA and LF in the lethal toxin complex.
PMCID: PMC4570726  PMID: 24857756
Bacillus anthracis; protective antigen; anthrax toxin; europium; immunoassays; time resolved fluorescence
9.  Pertussis Pathogenesis—What We Know and What We Don't Know 
The Journal of Infectious Diseases  2014;209(7):982-985.
Pertussis is a worldwide public health threat. Bordetella pertussis produces multiple virulence factors that have been studied individually, and many have recently been found to have additional biological activities. Nevertheless, how they interact to cause the disease pertussis remains unknown. New animal models, particularly the infection of infant baboons with B. pertussis, are enabling longstanding questions about pertussis pathogenesis to be answered and new ones to be asked. Enhancing our understanding of pathogenesis will enable new approaches to the prevention and control of pertussis.
PMCID: PMC3952676  PMID: 24626533
Bordetella pertussis; pertussis; pathogenesis; virulence factors; whooping cough
10.  High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures 
Analytical and Bioanalytical Chemistry  2015;407(10):2847-2858.
Inhalation anthrax has a rapid progression and high fatality rate. Pathology and death from inhalation of Bacillus anthracis spores are attributed to the actions of secreted protein toxins. Protective antigen (PA) binds and imports the catalytic component lethal factor (LF), a zinc endoprotease, and edema factor (EF), an adenylyl cyclase, into susceptible cells. PA-LF is termed lethal toxin (LTx) and PA-EF, edema toxin. As the universal transporter for both toxins, PA is an important target for vaccination and immunotherapeutic intervention. However, its quantification has been limited to methods of relatively low analytic sensitivity. Quantification of LTx may be more clinically relevant than LF or PA alone because LTx is the toxic form that acts on cells. A method was developed for LTx-specific quantification in plasma using anti-PA IgG magnetic immunoprecipitation of PA and quantification of LF activity that co-purified with PA. The method was fast (<4 h total time to detection), sensitive at 0.033 ng/mL LTx in plasma for the fast analysis (0.0075 ng/mL LTx in plasma for an 18 h reaction), precise (6.3–9.9 % coefficient of variation), and accurate (0.1–12.7 %error; n ≥ 25). Diagnostic sensitivity was 100 % (n = 27 animal/clinical cases). Diagnostic specificity was 100 % (n = 141). LTx was detected post-antibiotic treatment in 6/6 treated rhesus macaques and 3/3 clinical cases of inhalation anthrax and as long as 8 days post-treatment. Over the course of infection in two rhesus macaques, LTx was first detected at 0.101 and 0.237 ng/mL at 36 h post-exposure and increased to 1147 and 12,107 ng/mL in late-stage anthrax. This demonstrated the importance of LTx as a diagnostic and therapeutic target. This method provides a sensitive, accurate tool for anthrax toxin detection and evaluation of PA-directed therapeutics.
Graphical AbstractMethod schematic for analysis of anthrax lethal toxin activity by ID-MALDI-TOF MS
PMCID: PMC4369318  PMID: 25673244
Anthrax; MALDI-TOF MS; Quantification; Lethal toxin; Lethal factor; Protective antigen; Diagnostic; Bacillus anthracis
11.  Specific, Sensitive, and Quantitative Enzyme-Linked Immunosorbent Assay for Human Immunoglobulin G Antibodies to Anthrax Toxin Protective Antigen 
Emerging Infectious Diseases  2002;8(10):1103-1110.
The bioterrorism-associated human anthrax epidemic in the fall of 2001 highlighted the need for a sensitive, reproducible, and specific laboratory test for the confirmatory diagnosis of human anthrax. The Centers for Disease Control and Prevention developed, optimized, and rapidly qualified an enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies to Bacillus anthracis protective antigen (PA) in human serum. The qualified ELISA had a minimum detection limit of 0.06 µg/mL, a reliable lower limit of detection of 0.09 µg/mL, and a lower limit of quantification in undiluted serum specimens of 3.0 µg/mL anti-PA IgG. The diagnostic sensitivity of the assay was 97.8%, and the diagnostic specificity was 94.2%. A competitive inhibition anti-PA IgG ELISA was also developed to enhance diagnostic specificity to 100%. The anti-PA ELISAs proved valuable for the confirmation of cases of cutaneous and inhalational anthrax and evaluation of patients in whom the diagnosis of anthrax was being considered.
PMCID: PMC2730307  PMID: 12396924
Bacillus anthracis; anthrax; antibody; assay; toxin; bioterrorism; ELISA; serology
12.  The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG 
Glycobiology  2013;23(7):820-832.
Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10−6 to 7.51 × 10−6 M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein–carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs.
PMCID: PMC3671773  PMID: 23493680
Bacillus anthracis; bacteriophage; endolysin; polysaccharide; secondary cell wall polymer
13.  Lethal Factor and Anti-Protective Antigen IgG Levels Associated with Inhalation Anthrax, Minnesota, USA 
Emerging Infectious Diseases  2014;20(2):310-314.
Bacillus anthracis was identified in a 61-year-old man hospitalized in Minnesota, USA. Cooperation between the hospital and the state health agency enhanced prompt identification of the pathogen. Treatment comprising antimicrobial drugs, anthrax immune globulin, and pleural drainage led to full recovery; however, the role of passive immunization in anthrax treatment requires further evaluation.
PMCID: PMC3901492  PMID: 24447456
Inhalation anthrax; anthrax; anthrax immune globulin; critical care; anti-protective antigen; anti-PA; lethal factor; Minnesota; USA; Bacillus anthracis; zoonoses
14.  Human Leukocyte Antigens and Cellular Immune Responses to Anthrax Vaccine Adsorbed 
Infection and Immunity  2013;81(7):2584-2591.
Interindividual variations in vaccine-induced immune responses are in part due to host genetic polymorphisms in the human leukocyte antigen (HLA) and other gene families. This study examined associations between HLA genotypes, haplotypes, and homozygosity and protective antigen (PA)-specific cellular immune responses in healthy subjects following immunization with Anthrax Vaccine Adsorbed (AVA). While limited associations were observed between individual HLA alleles or haplotypes and variable lymphocyte proliferative (LP) responses to AVA, analyses of homozygosity supported the hypothesis of a “heterozygote advantage.” Individuals who were homozygous for any HLA locus demonstrated significantly lower PA-specific LP than subjects who were heterozygous at all eight loci (median stimulation indices [SI], 1.84 versus 2.95, P = 0.009). Similarly, we found that class I (HLA-A) and class II (HLA-DQA1 and HLA-DQB1) homozygosity was significantly associated with an overall decrease in LP compared with heterozygosity at those three loci. Specifically, individuals who were homozygous at these loci had significantly lower PA-specific LP than subjects heterozygous for HLA-A (median SI, 1.48 versus 2.13, P = 0.005), HLA-DQA1 (median SI, 1.75 versus 2.11, P = 0.007), and HLA-DQB1 (median SI, 1.48 versus 2.13, P = 0.002) loci, respectively. Finally, homozygosity at an increasing number (≥4) of HLA loci was significantly correlated with a reduction in LP response (P < 0.001) in a dose-dependent manner. Additional studies are needed to reproduce these findings and determine whether HLA-heterozygous individuals generate stronger cellular immune response to other virulence factors (Bacillus anthracis LF and EF) than HLA-homozygous subjects.
PMCID: PMC3697592  PMID: 23649091
15.  Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009 
Vector Borne and Zoonotic Diseases  2012;12(11):922-931.
U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.
PMCID: PMC3533868  PMID: 22835153
Incidence; National Park Service; Prevalence; Vector-borne; Zoonoses
16.  Endolysins of Bacillus anthracis Bacteriophages Recognize Unique Carbohydrate Epitopes of Vegetative Cell Wall Polysaccharides with High Affinity and Selectivity 
Journal of the American Chemical Society  2012;134(37):15556-15562.
Bacteriophages express endolysins which are the enzymes that hydrolyze peptidoglycan resulting in cell lysis and release of bacteriophages. Endolysins have acquired stringent substrate specificities, which have been attributed to cell wall binding domains (CBD). Although it has been realized that CBDs of bacteriophages that infect Gram-positive bacteria target cell wall carbohydrate structures, molecular mechanisms that confer selectivity are not understood. A range of oligosaccharides, derived from the secondary cell wall polysaccharides of Bacillus anthracis, has been chemically synthesized. The compounds contain an α-D-GlcNAc-(1→4)-β-D-ManNAc-(1→4)-β-D-GlcNAc backbone that is modified by various patterns of α-D-Gal and β-D-Gal branching points. The library of compounds could readily be prepared by employing a core trisaccharide modified by the orthogonal protecting groups Nα-9-fluorenylmethyloxycarbonate (Fmoc), 2-methylnaphthyl ether (Nap) and levulinoyl ester (Lev) and dimethylthexylsilyl ether (TDS) at key branching points. Dissociation constants for the binding the cell wall binding domains of the endolysins PlyL and PlyG were determined by surface plasmon resonance (SPR). It was found that the pattern of galactosylation greatly influenced binding affinities, and in particular a compound having a galactosyl moiety at C-4 of the non-reducing GlcNAc moiety bound in the low micromolar range. It is known that secondary cell wall polysaccharides of various bacilli may have both common and variable structural features and in particular differences in the pattern of galactosylation have been noted. Therefore, it is proposed that specificity of endolysins for specific bacilli is achieved by selective binding to a uniquely galactosylated core structure.
PMCID: PMC3489029  PMID: 22935003
17.  Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684 
Glycobiology  2012;22(8):1103-1117.
Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH2-(1→.
PMCID: PMC3382348  PMID: 22556058
Bacillus anthracis; cell wall; polysaccharide; pyruvylation; structure
18.  A Genome-wide Association Study of Host Genetic Determinants of the Antibody Response to Anthrax Vaccine Adsorbed 
Vaccine  2012;30(32):4778-4784.
Several lines of evidence have supported a host genetic contribution to vaccine response, but genome-wide assessments for specific determinants have been sparse. Here we describe a genome-wide association study (GWAS) of protective antigen-specific antibody (AbPA) responses among 726 European-Americans who received Anthrax Vaccine Adsorbed (AVA) as part of a clinical trial. After quality control, 736,996 SNPs were tested for association with the AbPA response to 3 or 4 AVA vaccinations given over a 6-month period. No SNP achieved the threshold of genome-wide significance (p=5x10−8), but suggestive associations (p<1x10−5) were observed for SNPs in or near the class II region of the major histocompatibility complex (MHC), in the promoter region of SPSB1, and adjacent to MEX3C. Multivariable regression modeling suggested that much of the association signal within the MHC corresponded to previously identified HLA DR-DQ haplotypes involving component HLA-DRB1 alleles of *15:01, *01:01, or *01:02. We estimated the proportion of additive genetic variance explained by common SNP variation for the AbPA response after the 6 month vaccination. This analysis indicated a significant, albeit imprecisely estimated, contribution of variation tagged by common polymorphisms (p=0.032). Future studies will be required to replicate these findings in European Americans and to further elucidate the host genetic factors underlying variable immune response to AVA.
PMCID: PMC3387748  PMID: 22658931
Anthrax vaccines; Bacillus anthracis; bacterial vaccines; vaccination; Genome-wide association study
19.  Anthrax Vaccine Induced Antibodies Provide Cross-Species Prediction of Survival to Aerosol Challenge 
Science translational medicine  2012;4(151):151ra126.
Because clinical trials to assess the efficacy of vaccines against anthrax are not ethical or feasible, licensure for new anthrax vaccines will likely involve the Food and Drug Administration’s “Animal Rule,” a set of regulations that allow approval of products based on efficacy data only in animals combined with immunogenicity and safety data in animals and humans. US government sponsored animal studies have shown anthrax vaccine efficacy in a variety of settings. We examined data from 21 of those studies to determine if an immunological bridge based on lethal toxin neutralization activity assay (TNA) can predict survival against an inhalation anthrax challenge within and across species and genera. The 21 studies were classified into 11 different settings, each of which had the same animal species, vaccine type and formulation, vaccination schedule, time of TNA measurement, and challenge time. Logistic regression models determined the contribution of vaccine dilution dose and TNA on prediction of survival. For most settings, logistic models using only TNA explained more than 75% of the survival effect of the models with dose additionally included. Cross species survival predictions using TNA were compared to the actual survival and shown to have good agreement (Cohen’s κ ranged from 0.55 to 0.78). In one study design, cynomolgus macaque data predicted 78.6% survival in rhesus macaques (actual survival 83.0%) and 72.6% in rabbits (actual survival, 64.6%). These data add support for the use of TNA as an immunological bridge between species to extrapolate data in animals to predict anthrax vaccine effectiveness in humans.
PMCID: PMC3668972  PMID: 22972844
animal rule; anthrax vaccine adsorbed; correlate of protection; recombinant protective antigen; toxin neutralizing activity assay
20.  Analysis of Defined Combinations of Monoclonal Antibodies in Anthrax Toxin Neutralization Assays and Their Synergistic Action 
Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax.
PMCID: PMC3346336  PMID: 22441391
21.  Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis 
Glycobiology  2011;21(7):934-948.
Secondary cell wall polysaccharides (SCWPs) are important structural components of the Bacillus cell wall and contribute to the array of antigens presented by these organisms in both spore and vegetative forms. We previously found that antisera raised to Bacillus anthracis spore preparations cross-reacted with SCWPs isolated from several strains of pathogenic B. cereus, but did not react with other phylogenetically related but nonpathogenic Bacilli, suggesting that the SCWP from B. anthracis and pathogenic B. cereus strains share specific structural features. In this study, SCWPs from three strains of B. cereus causing severe or fatal pneumonia (G9241, 03BB87 and 03BB102) were isolated and subjected to structural analysis and their structures were compared to SCWPs from B. anthracis. Complete structural analysis was performed for the B. cereus G9241 SCWP using NMR spectroscopy, mass spectrometry and derivatization methods. The analyses show that SCWPs from B. cereus G9241 has a glycosyl backbone identical to that of B. anthracis SCWP, consisting of multiple trisaccharide repeats of: →6)-α-d-GlcpNAc-(1 → 4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1→. Both the B. anthracis and pathogenic B. cereus SCWPs are highly substituted at all GlcNAc residues with α- and β-Gal residues, however, only the SCWPs from B. cereus G9241 and 03BB87 carry an additional α-Gal substitution at O-3 of ManNAc residues, a feature lacking in the B. anthracis SCWPs. Both the B. anthracis and B. cereus SCWPs are pyruvylated, with an approximate molecular mass of ≈12,000 Da. The implications of these findings regarding pathogenicity and cell wall structure are discussed.
PMCID: PMC3110489  PMID: 21421577
Bacillus anthracis; Bacillus cereus; cell wall; polysaccharide; structure
22.  Sensitivity and Specificity of Serologic Assays for Detection of Human Infection with 2009 Pandemic H1N1 Virus in U.S. Populations▿ 
Journal of Clinical Microbiology  2011;49(6):2210-2215.
Swine origin 2009 H1N1 influenza virus has spread globally to cause the first influenza pandemic of the 21st century. Serological studies can improve our understanding of the extent of human infection and risk factors associated with the transmission of this pandemic virus. The “gold standard” for serodiagnosis of human influenza virus infection is the detection of seroconversion between acute- and convalescent-stage samples. However, the timing of seroepidemiological investigations often precludes the collection of truly acute-phase sera, requiring development of serological criteria for evaluating convalescent-phase sera that optimize detection of true positives and true negatives. To guide seroepidemiological investigations into the spread of the novel 2009 pandemic H1N1 virus, we characterized serum antibody responses to 2009 H1N1 virus in 87 individuals with confirmed viral infection and 227 nonexposed U.S. individuals using microneutralization (MN) and hemagglutination inhibition (HI) assays. Sensitivity and specificity were determined for each assay alone and in combination for detection of 2009 H1N1 virus-specific antibodies in convalescent-phase sera. Although the HI assay was more specific for detecting antibody to 2009 H1N1, the MN assay was more sensitive, particularly for detecting low-titer seroconversions. A combination of titers (MN ≥ 40 and HI ≥ 20) provided the highest sensitivity (90%) and specificity (96%) for individuals aged <60 years and 92% specificity for adults aged ≥60 years for detection of serologically confirmed 2009 H1N1 infections in U.S. populations during the first pandemic waves. These studies provide an approach to optimize timely serological investigations for future pandemics or outbreaks of novel influenza viruses among humans.
PMCID: PMC3122722  PMID: 21471339
23.  Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques ▿ 
The Bacillus anthracis exosporium protein BclA contains an O-linked antigenic tetrasaccharide whose terminal sugar is known as anthrose (J. M. Daubenspeck et al., J. Biol. Chem. 279:30945–30953, 2004). We hypothesized that serologic responses to anthrose may have diagnostic value in confirming exposure to aerosolized B. anthracis. We evaluated the serologic responses to a synthetic anthrose-containing trisaccharide (ATS) in a group of five rhesus macaques that survived inhalation anthrax following exposure to B. anthracis Ames spores. Two of five animals (RM2 and RM3) were treated with ciprofloxacin starting at 48 hours postexposure and two (RM4 and RM5) at 72 h postexposure; one animal (RM1) was untreated. Infection was confirmed by blood culture and detection of anthrax toxin lethal factor (LF) in plasma. Anti-ATS IgG responses were determined at 14, 21, 28, and 35 days postexposure, with preexposure serum as a control. All animals, irrespective of ciprofloxacin treatment, mounted a specific, measurable anti-ATS IgG response. The earliest detectable responses were on days 14 (RM1, RM2, and RM5), 21 (RM4), and 28 (RM3). Specificity of the anti-ATS responses was demonstrated by competitive-inhibition enzyme immunoassay (CIEIA), in which a 2-fold (wt/wt) excess of carbohydrate in a bovine serum albumin (BSA) conjugate of the oligosaccharide (ATS-BSA) effected >94% inhibition, whereas a structural analog lacking the 3-hydroxy-3-methyl-butyryl moiety at the C-4" of the anthrosyl residue had no inhibition activity. These data suggest that anti-ATS antibody responses may be used to identify aerosol exposure to B. anthracis spores. The anti-ATS antibody responses were detectable during administration of ciprofloxacin.
PMCID: PMC3122534  PMID: 21389148
24.  Lethal Factor Toxemia and Anti-Protective Antigen Antibody Activity in Naturally Acquired Cutaneous Anthrax 
The Journal of Infectious Diseases  2011;204(9):1321-1327.
Cutaneous anthrax outbreaks occurred in Bangladesh from August to October 2009. As part of the epidemiological response and to confirm anthrax diagnoses, serum samples were collected from suspected case patients with observed cutaneous lesions. Anthrax lethal factor (LF), anti-protective antigen (anti-PA) immunoglobulin G (IgG), and anthrax lethal toxin neutralization activity (TNA) levels were determined in acute and convalescent serum of 26 case patients with suspected cutaneous anthrax from the first and largest of these outbreaks. LF (0.005–1.264 ng/mL) was detected in acute serum from 18 of 26 individuals. Anti-PA IgG and TNA were detected in sera from the same 18 individuals and ranged from 10.0 to 679.5 μg/mL and 27 to 593 units, respectively. Seroconversion to serum anti-PA and TNA was found only in case patients with measurable toxemia. This is the first report of quantitative analysis of serum LF in cutaneous anthrax and the first to associate acute stage toxemia with subsequent antitoxin antibody responses.
PMCID: PMC3182309  PMID: 21908727
25.  Vaccination of Rhesus Macaques with the Anthrax Vaccine Adsorbed Vaccine Produces a Serum Antibody Response That Effectively Neutralizes Receptor-Bound Protective Antigen In Vitro ▿  
Clinical and Vaccine Immunology : CVI  2010;17(11):1753-1762.
Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.
PMCID: PMC2976102  PMID: 20739500

Results 1-25 (39)