PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Introduction of Monochloramine into a Municipal Water System: Impact on Colonization of Buildings by Legionella spp. 
Legionnaires' disease (LD) outbreaks are often traced to colonized potable water systems. We collected water samples from potable water systems of 96 buildings in Pinellas County, Florida, between January and April 2002, during a time when chlorine was the primary residual disinfectant, and from the same buildings between June and September 2002, immediately after monochloramine was introduced into the municipal water system. Samples were cultured for legionellae and amoebae using standard methods. We determined predictors of Legionella colonization of individual buildings and of individual sampling sites. During the chlorine phase, 19 (19.8%) buildings were colonized with legionellae in at least one sampling site. During the monochloramine phase, six (6.2%) buildings were colonized. In the chlorine phase, predictors of Legionella colonization included water source (source B compared to all others, adjusted odds ratio [aOR], 6.7; 95% confidence interval [CI], 2.0 to 23) and the presence of a system with continuously circulating hot water (aOR, 9.8; 95% CI, 1.9 to 51). In the monochloramine phase, there were no predictors of individual building colonization, although we observed a trend toward greater effectiveness of monochloramine in hotels and single-family homes than in county government buildings. The presence of amoebae predicted Legionella colonization at individual sampling sites in both phases (OR ranged from 15 to 46, depending on the phase and sampling site). The routine introduction of monochloramine into a municipal drinking water system appears to have reduced colonization by Legionella spp. in buildings served by the system. Monochloramine may hold promise as community-wide intervention for the prevention of LD.
doi:10.1128/AEM.72.1.378-383.2006
PMCID: PMC1352249  PMID: 16391067
2.  Evaluation of Amphotericin B Interpretive Breakpoints for Candida Bloodstream Isolates by Correlation with Therapeutic Outcome 
One hundred seven Candida bloodstream isolates (51 C. albicans, 24 C. glabrata, 13 C. parapsilosis, 13 C. tropicalis, 2 C. dubliniensis, 2 C. krusei, and 2 C. lusitaniae strains) from patients treated with amphotericin B alone underwent in vitro susceptibility testing against amphotericin B using five different methods. Fifty-four isolates were from patients who failed treatment, defined as death 7 to 14 days after the incident candidemia episode, having persistent fever of ≥5 days' duration after the date of the incident candidemia, or the recurrence of fever after two consecutive afebrile days while on antifungal treatment. MICs were determined by using the Clinical Laboratory Standards Institute (formally National Committee for Clinical Laboratory Standards) broth microdilution procedure with two media and by using Etest. Minimum fungicidal concentrations (MFCs) were also measured in two media. Broth microdilution tests with RPMI 1640 medium generated a restricted range of MICs (0.125 to 1 μg/ml); the corresponding MFC values ranged from 0.5 to 4 μg/ml. Broth microdilution tests with antibiotic medium 3 produced a broader distribution of MIC and MFC results (0.015 to 0.25 μg/ml and 0.06 to 2 μg/ml, respectively). Etest produced the widest distribution of MICs (0.094 to 2 μg/ml). However, none of the test formats studied generated results that significantly correlated with therapeutic success or failure.
doi:10.1128/AAC.50.4.1287-1292.2006
PMCID: PMC1426914  PMID: 16569842
3.  Incidence of Bloodstream Infections Due to Candida Species and In Vitro Susceptibilities of Isolates Collected from 1998 to 2000 in a Population-Based Active Surveillance Program 
Journal of Clinical Microbiology  2004;42(4):1519-1527.
To determine the incidence of Candida bloodstream infections (BSI) and antifungal drug resistance, population-based active laboratory surveillance was conducted from October 1998 through September 2000 in two areas of the United States (Baltimore, Md., and the state of Connecticut; combined population, 4.7 million). A total of 1,143 cases were detected, for an average adjusted annual incidence of 10 per 100,000 population or 1.5 per 10,000 hospital days. In 28% of patients, Candida BSI developed prior to or on the day of admission; only 36% of patients were in an intensive care unit at the time of diagnosis. No fewer than 78% of patients had a central catheter in place at the time of diagnosis, and 50% had undergone surgery within the previous 3 months. Candida albicans comprised 45% of the isolates, followed by C. glabrata (24%), C. parapsilosis (13%), and C. tropicalis (12%). Only 1.2% of C. albicans isolates were resistant to fluconazole (MIC, ≥64 μg/ml), compared to 7% of C. glabrata isolates and 6% of C. tropicalis isolates. Only 0.9% of C. albicans isolates were resistant to itraconazole (MIC, ≥1 μg/ml), compared to 19.5% of C. glabrata isolates and 6% of C. tropicalis isolates. Only 4.3% of C. albicans isolates were resistant to flucytosine (MIC, ≥32 μg/ml), compared to <1% of C. parapsilosis and C. tropicalis isolates and no C. glabrata isolates. As determined by E-test, the MICs of amphotericin B were ≥0.38 μg/ml for 10% of Candida isolates, ≥1 μg/ml for 1.7% of isolates, and ≥2 μg/ml for 0.4% of isolates. Our findings highlight changes in the epidemiology of Candida BSI in the 1990s and provide a basis upon which to conduct further studies of selected high-risk subpopulations.
doi:10.1128/JCM.42.4.1519-1527.2004
PMCID: PMC387610  PMID: 15070998
4.  Use of Real-Time PCR To Resolve Slide Agglutination Discrepancies in Serogroup Identification of Neisseria meningitidis 
Journal of Clinical Microbiology  2004;42(1):320-328.
Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia in children and young adults in the United States. Rapid and reliable identification of N. meningitidis serogroups is crucial for judicious and expedient response to cases of meningococcal disease, including decisions about vaccination campaigns. From 1997 to 2002, 1,298 N. meningitidis isolates, collected in the United States through the Active Bacterial Core surveillance (ABCs), were tested by slide agglutination serogrouping (SASG) at both the ABCs sites and the Centers for Disease Control and Prevention (CDC). For over 95% of isolates, SASG results were concordant, while discrepant results were reported for 58 isolates. To resolve these discrepancies, we repeated the SASG in a blinded fashion and employed ctrA and six serogroup-specific PCR assays (SGS-PCR) to determine the genetic capsule type. Seventy-eight percent of discrepancies were resolved, since results of the SGS-PCR and SASG blinded study agreed with each other and confirmed the SASG result at either state health laboratories or CDC. This study demonstrated the ability of SGS-PCR to efficiently resolve SASG discrepancies and identified the main cause of the discrepancies as overreporting of these isolates as nongroupable. It also reemphasized the importance of adherence to quality assurance procedures when performing SASG and prompted prospective monitoring for SASG discrepancies involving isolates collected through ABCs in the United States.
doi:10.1128/JCM.42.1.320-328.2004
PMCID: PMC321732  PMID: 14715772
5.  Evaluation of Four Commercially Available Rapid Serologic Tests for Diagnosis of Leptospirosis 
Journal of Clinical Microbiology  2003;41(2):803-809.
Four rapid tests for the serologic diagnosis of leptospirosis were evaluated, and the performance of each was compared with that of the current standard, the microscopic agglutination test (MAT). The four rapid tests were a microplate immunoglobulin M (IgM)-enzyme-linked immunosorbent assay (ELISA), an indirect hemagglutination assay (IHA), an IgM dipstick assay (LDS), and an IgM dot-ELISA dipstick test (DST). A panel of 276 sera from 133 cases of leptospirosis from four different geographic locations was tested as well as 642 sera from normal individuals or individuals with other infectious or autoimmune diseases. Acute-phase sera from cases (n = 148) were collected ≤14 days (median = 6.0) after the onset of symptoms, and convalescent-phase sera (n = 128) were collected ≥15 days after onset (median = 29.1). By a traditional method (two-by-two contingency table), the sensitivities for detection of leptospirosis cases were 93.2% by LDS, 92.5% by DST, 86.5% by ELISA, and 79.0% by IHA. Specificity was 98.8% by DST, 97% by ELISA and MAT, 95.8% by IHA, and 89.6% by LDS. With a latent class analysis (LCA) model that included all the rapid tests and the clinical case definition, sensitivity was 95.5% by DST, 94.5% by LDS, 89.9% by ELISA, and 81.1% by IHA. The sensitivity and specificity estimated by the traditional methods were quite close to the LCA estimates. However, LCA allowed estimation of the sensitivity of the MAT (98.2%), which traditional methods do not allow. For acute-phase sera, sensitivity was 52.7% by LDS, 50.0% by DST, 48.7% by MAT and ELISA, and 38.5% by IHA. The sensitivity for convalescent-phase sera was 93.8% by MAT, 84.4% by DST, 83.6% by LDS, 75.0% by ELISA, and 67.2% by IHA. A good overall correlation with the MAT was obtained for each of the assays, with the highest concordance being with the DST (kappa value, 0.85; 95% confidence interval [CI], 0.8 to 0.90). The best correlation was between ELISA and DST (kappa value, 0.86; 95% CI, 0.81 to 0.91). False-positive LDS results were frequent (≥20%) in sera from individuals with Epstein-Barr virus, human immunodeficiency virus, and periodontal disease and from healthy volunteers. The ease of use and significantly high sensitivity and specificity of DST and ELISA make these good choices for diagnostic testing.
doi:10.1128/JCM.41.2.803-809.2003
PMCID: PMC149700  PMID: 12574287
6.  Bacillus anthracis Aerosolization Associated with a Contaminated Mail Sorting Machine 
Emerging Infectious Diseases  2002;8(10):1044-1047.
On October 12, 2001, two envelopes containing Bacillus anthracis spores passed through a sorting machine in a postal facility in Washington, D.C. When anthrax infection was identified in postal workers 9 days later, the facility was closed. To determine if exposure to airborne B. anthracis spores continued to occur, we performed air sampling around the contaminated sorter. One CFU of B. anthracis was isolated from 990 L of air sampled before the machine was activated. Six CFUs were isolated during machine activation and processing of clean dummy mail. These data indicate that an employee working near this machine might inhale approximately 30 B. anthracis-containing particles during an 8-h work shift. What risk this may have represented to postal workers is not known, but the risk is approximately 20-fold less than estimates of sub-5 micron B. anthracis-containing particles routinely inhaled by asymptomatic, unvaccinated workers in a goat-hair mill.
doi:10.3201/eid0810.020356
PMCID: PMC2730297  PMID: 12396913
Bacillus anthracis; anthrax; risk assessment; occupational exposure
7.  Automatic Electronic Laboratory-Based Reporting of Notifiable Infectious Diseases 
Emerging Infectious Diseases  2002;8(7):685-691.
Electronic laboratory-based reporting, developed by the University of Pittsburgh Medical Center (UPMC) Health System, was evaluated to determine if it could be integrated into the conventional paper-based reporting system. We reviewed reports of 10 infectious diseases from 8 UPMC hospitals that reported to the Allegheny County Health Department in southwestern Pennsylvania during January 1–November 26, 2000. Electronic reports were received a median of 4 days earlier than conventional reports. The completeness of reporting was 74% (95% confidence interval [CI] 66% to 81%) for the electronic laboratory-based reporting and 65% (95% CI 57% to 73%) for the conventional paper-based reporting system (p>0.05). Most reports (88%) missed by electronic laboratory-based reporting were caused by using free text. Automatic reporting was more rapid and as complete as conventional reporting. Using standardized coding and minimizing free text usage will increase the completeness of electronic laboratory-based reporting.
doi:10.3201/eid0807.010493
PMCID: PMC2730325  PMID: 12095435
bioterrorism; electronic laboratory-based reporting; Health Level 7 (HL7); real-time; capture-recapture; National Electronic Disease Surveillance System (NEDSS)

Results 1-7 (7)