PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A Novel Neural Substrate for the Transformation of Olfactory Inputs into Motor Output 
PLoS Biology  2010;8(12):e1000567.
Anatomical and physiological experiments in the lamprey reveal the neural circuit involved in transforming olfactory inputs into motor outputs, which was previously unknown in a vertebrate.
It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.
Author Summary
Animal behaviors, including locomotion, can be driven by olfactory cues, such as pheromones or food sources. The neural substrate (neuroanatomical connections and physiological signals) that permits the transformation of olfactory inputs into locomotor responses is still unknown in vertebrates. In the present study, we identify such a neural substrate in the lamprey. Here, olfactory signals from the outside world are transmitted to the reticulospinal neurons in the lower brainstem, which provide the descending locomotor command to the spinal cord. We found that this circuit originates in the medial portion of the olfactory bulb and that connections are made in the posterior tuberculum, a ventral diencephalic structure. These inputs are then conveyed to the mesencephalic locomotor region, known to project extensively to brainstem reticulospinal neurons and thereby activate locomotion. Our results illuminate a specific dedicated neural substrate in the brain of lampreys that underlies olfactory-motor responses, which is activated by both food-related or pheromonal olfactory cues. It will be of interest to determine whether such a pathway is preserved in all vertebrates.
doi:10.1371/journal.pbio.1000567
PMCID: PMC3006349  PMID: 21203583

Results 1-1 (1)