Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins 
DNA repair  2015;30:1-10.
AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate.
Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins.
PMCID: PMC4451939  PMID: 25797601
AlkB; Etheno adducts; 1,N6-Ethenoadenine; 3,N4-Ethenocytosine; 1,N2-Ethenoguanine; DNA repair
2.  Protozoan ALKBH8 Oxygenases Display both DNA Repair and tRNA Modification Activities 
PLoS ONE  2014;9(6):e98729.
The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1–8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.
PMCID: PMC4051686  PMID: 24914785
3.  Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA 
Nucleic Acids Research  2011;39(17):7688-7701.
Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or derivatives thereof. Here, we demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm5U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm5U to (S)-mchm5U in tRNAGlyUCC, and has a function similar to the mammalian dioxygenase ALKBH8. Interestingly, atalkbh8 mutant plants displayed strongly increased levels of mcm5U, and also of mcm5Um, its 2′-O-ribose methylated derivative. This suggests that accumulated mcm5U is prone to further ribose methylation by a non-specialized mechanism, and may challenge the notion that the existence of mcm5U- and mcm5Um-containing forms of the selenocysteine-specific tRNASec in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines.
PMCID: PMC3177185  PMID: 21653555
4.  Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding▿  
Molecular and Cellular Biology  2010;30(7):1814-1827.
Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8−/− mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2′-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8−/− mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8−/− mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.
PMCID: PMC2838068  PMID: 20123966
5.  Biochemical Characterization of Arterivirus Nonstructural Protein 11 Reveals the Nidovirus-Wide Conservation of a Replicative Endoribonuclease▿ †  
Journal of Virology  2009;83(11):5671-5682.
Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.
PMCID: PMC2681944  PMID: 19297500
6.  Bioinformatics and functional analysis define four distinct groups of AlkB DNA-dioxygenases in bacteria 
Nucleic Acids Research  2009;37(21):7124-7136.
The iron(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from Escherichia coli (EcAlkB) repairs alkylation damage in DNA by direct reversal. EcAlkB substrates include methylated bases, such as 1-methyladenine (m1A) and 3-methylcytosine (m3C), as well as certain bulkier lesions, for example the exocyclic adduct 1,N6-ethenoadenine (εA). EcAlkB is the only bacterial AlkB protein characterized to date, and we here present an extensive bioinformatics and functional analysis of bacterial AlkB proteins. Based on sequence phylogeny, we show that these proteins can be subdivided into four groups: denoted 1A, 1B, 2A and 2B; each characterized by the presence of specific conserved amino acid residues in the putative nucleotide-recognizing domain. A scattered distribution of AlkB proteins from the four different groups across the bacterial kingdom indicates a substantial degree of horizontal transfer of AlkB genes. DNA repair activity was associated with all tested recombinant AlkB proteins. Notably, both a group 2B protein from Xanthomonas campestris and a group 2A protein from Rhizobium etli repaired etheno adducts, but had negligible activity on methylated bases. Our data indicate that the majority, if not all, of the bacterial AlkB proteins are DNA repair enzymes, and that some of these proteins do not primarily target methylated bases.
PMCID: PMC2790896  PMID: 19786499
7.  Viral AlkB proteins repair RNA damage by oxidative demethylation 
Nucleic Acids Research  2008;36(17):5451-5461.
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.
PMCID: PMC2553587  PMID: 18718927
8.  New Structure Model for the Packaging Signal in the Genome of Group IIa Coronaviruses▿  
Journal of Virology  2007;81(12):6771-6774.
A 190-nucleotide (nt) packaging signal (PS) located in the 3′ end of open reading frame 1b in the mouse hepatitis virus, a group IIa coronavirus, was previously postulated to direct genome RNA packaging. Based on phylogenetic data and structure probing, we have identified a 95-nt hairpin within the 190-nt PS domain which is conserved in all group IIa coronaviruses but not in the severe acute respiratory syndrome coronavirus (group IIb), group I coronaviruses, or group III coronaviruses. The hairpin is composed of six copies of a repeating structural subunit that consists of 2-nt bulges and 5-bp stems. We propose that repeating AA bulges are characteristic features of group IIa PSs.
PMCID: PMC1900089  PMID: 17428856
9.  Discontinuous Subgenomic RNA Synthesis in Arteriviruses Is Guided by an RNA Hairpin Structure Located in the Genomic Leader Region 
Journal of Virology  2005;79(10):6312-6324.
Nidoviruses produce an extensive 3′-coterminal nested set of subgenomic (sg) mRNAs, which are used to express structural proteins and sometimes accessory proteins. In arteriviruses and coronaviruses, these mRNAs contain a common 5′ leader sequence, derived from the genomic 5′ end. The joining of the leader sequence to different segments derived from the 3′-proximal part of the genome (mRNA bodies) presumably involves a unique mechanism of discontinuous minus-strand RNA synthesis in which base pairing between sense and antisense transcription-regulating sequences (TRSs) plays an essential role. The leader TRS is present in the loop of a hairpin structure that functions in sg mRNA synthesis. In this study, the minimal sequences in the 5′-proximal region of the Equine arteritis virus genome that are required for sg RNA synthesis were delimited through mutagenesis. A full-length cDNA clone was engineered in which this domain was duplicated, allowing us to make mutations and monitor their effects on sg RNA synthesis without seriously affecting genome replication and translation. The leader TRS present in the duplicated sequence was used and yielded novel sg mRNAs with significantly extended leaders. Our combined findings suggest that the leader TRS hairpin (LTH) and its immediate flanking sequences are essential for efficient sg RNA synthesis and form an independent functional entity that could be moved 300 nucleotides downstream of its original position in the genome. We hypothesize that a conformational switch in the LTH region regulates the role of the 5′-proximal region of the arterivirus genome in subgenomic RNA synthesis.
PMCID: PMC1091703  PMID: 15858015
10.  Controlled Modulation of Folate Polyglutamyl Tail Length by Metabolic Engineering of Lactococcus lactis 
Applied and Environmental Microbiology  2003;69(12):7101-7107.
The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an increase in the length of the polyglutamyl tail from the predominant 4, 5, and 6 glutamate residues in wild-type cells to a maximum of 12 glutamate residues in the folate synthetase overproducer and resulted in a complete retention of folate in the cells. Overexpression of folKE, encoding the bifunctional protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase and GTP-cyclohydrolase I, resulted in reduction of the average polyglutamyl tail length, leading to enhanced excretion of folate. By simultaneous overexpression of folKE and folC, encoding the enzyme folate synthetase or polyglutamyl folate synthetase, the average polyglutamyl tail length was increased, again resulting in normal wild-type distribution of folate. The production of bioavailable monoglutamyl folate and almost complete release of folate from the bacterium was achieved by expressing the gene for γ-glutamyl hydrolase from human or rat origin. These engineering studies clearly establish the role of the polyglutamyl tail length in intracellular retention of the folate produced. Also, the potential application of engineered food microbes producing folates with different tail lengths is discussed.
PMCID: PMC309937  PMID: 14660354
11.  The Stability of the Duplex between Sense and Antisense Transcription-Regulating Sequences Is a Crucial Factor in Arterivirus Subgenomic mRNA Synthesis 
Journal of Virology  2003;77(2):1175-1183.
Subgenomic mRNAs of nidoviruses (arteriviruses and coronaviruses) are composed of a common leader sequence and a “body” part of variable size, which are derived from the 5′- and 3′-proximal part of the genome, respectively. Leader-to-body joining has been proposed to occur during minus-strand RNA synthesis and to involve transfer of the nascent RNA strand from one site in the template to another. This discontinuous step in subgenomic RNA synthesis is guided by short transcription-regulating sequences (TRSs) that are present at both these template sites (leader TRS and body TRS). Sense-antisense base pairing between the leader TRS in the plus strand and the body TRS complement in the minus strand is crucial for strand transfer. Here we show that extending the leader TRS-body TRS duplex beyond its wild-type length dramatically enhanced the subgenomic mRNA synthesis of the arterivirus Equine arteritis virus (EAV). Generally, the relative amount of a subgenomic mRNA correlated with the calculated stability of the corresponding leader TRS-body TRS duplex. In addition, various leader TRS mutations induced the generation of minor subgenomic RNA species that were not detected upon infection with wild-type EAV. The synthesis of these RNA species involved leader-body junction events at sites that bear only limited resemblance to the canonical TRS. However, with the mutant leader TRS, but not with the wild-type leader TRS, these sequences could form a duplex that was stable enough to direct subgenomic RNA synthesis, again demonstrating that the stability of the leader TRS-body TRS duplex is a crucial factor in arterivirus subgenomic mRNA synthesis.
PMCID: PMC140805  PMID: 12502834

Results 1-11 (11)