PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance 
Biology Direct  2009;4:21.
Background
Previous studies have revealed a wide-spread occurence of the partial and complete genomes of the reverse-transcribing pararetroviruses in the nuclear genomes of herbaceous plants. Although the absence of the virus-encoded integrases attests to the random and incidental incorporation of the viral sequences, their presence could have functional implications for the virus-host interactions.
Hypothesis
Analyses of two nuclear genomes of grapevine revealed multiple events of horizontal gene transfer from pararetroviruses. The ~200–800 bp inserts that corresponded to partial ORFs encoding reverse transcriptase apparently derived from unknown or extinct caulimoviruses and tungroviruses, were found in 11 grapevine chromosomes. In contrast to the previous reports, no reliable cases of the inserts derived from the positive-strand RNA viruses were found. Because grapevine is known to be infected by the diverse positive-strand RNA viruses, but not pararetroviruses, we hypothesize that pararetroviral inserts have conferred host resistance to these viruses. Furthermore, we propose that such resistance involves RNA interference-related mechanisms acting via small RNA-mediated methylation of pararetroviral DNAs and/or via degradation of the viral mRNAs.
Conclusion
The pararetroviral sequences in plant genomes may be maintained due to the benefits of virus resistance to this class of viruses conferred by their presence. Such resistance could be particularly significant for the woody plants that must withstand years- to centuries-long virus assault. Experimental research into the RNA interference pathways involving the integrated pararetroviral inserts is required to test this hypothesis.
Reviewers
This article was reviewed by Arcady R. Mushegian, I. King Jordan, and Eugene V. Koonin.
doi:10.1186/1745-6150-4-21
PMCID: PMC2714080  PMID: 19558678
2.  Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome 
BMC Genomics  2008;9:469.
Background
Retrotransposons make a significant contribution to the size, organization and genetic diversity of their host genomes. To characterize retrotransposon families in the grapevine genome (the fourth crop plant genome sequenced) we have combined two approaches: a PCR-based method for the isolation of RnaseH-LTR sequences with a computer-based sequence similarity search in the whole-genome sequence of PN40024.
Results
Supported by a phylogenic analysis, ten novel Ty1/copia families were distinguished in this study. To select a canonical reference element sequence from amongst the various insertions in the genome belonging to each retroelement family, the following screening criteria were adopted to identify the element sequence with: (1) perfect 5 bp-duplication of target sites, (2) the highest level of identity between 5' and 3'-LTR within a single insertion sequence, and (3) longest, un-interrupted coding capacity within the gag-pol ORF. One to eight copies encoding a single putatively functional gag-pol polyprotein were found for three families, indicating that these families could be still autonomous and active. For the others, no autonomous copies were identified. However, a subset of copies within the presumably non-autonomous families had perfect identity between their 5' and 3' LTRs, indicating a recent insertion event. A phylogenic study based on the sequence alignment of the region located between reverse transcriptase domains I and VII distinguished these 10 families from other plant retrotransposons. Including the previously characterized Ty1/copia-like grapevine retrotransposons Tvv1 and Vine 1 and the Ty3/gypsy-like Gret1 in this assessment, a total of 1709 copies were identified for the 13 retrotransposon families, representing 1.24% of the sequenced genome. The copy number per family ranged from 91–212 copies. We performed insertion site profiling for 8 out of the 13 retrotransposon families and confirmed multiple insertions of these elements across the Vitis genus. Insertional polymorphism analysis and dating of full-length copies based on their LTR divergence demonstrated that each family has a particular amplification history, with 71% of the identified copies being inserted within the last 2 million years.
Conclusion
The strategy we used efficiently delivered new Ty1/copia-like retrotransposon sequences, increasing the total number of characterized grapevine retrotrotransposons from 3 to 13. We provide insights into the representation and dynamics of the 13 families in the genome. Our data demonstrated that each family has a particular amplification pattern, with 7 families having copies recently inserted within the last 0.2 million year. Among those 7 families with recent insertions, three retain the capacity for activity in the grape genome today.
doi:10.1186/1471-2164-9-469
PMCID: PMC2576258  PMID: 18842156

Results 1-2 (2)