Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Role of Adult Neurogenesis in Hippocampus-Dependent Memory, Contextual Fear Extinction and Remote Contextual Memory: New Insights from ERK5 MAP Kinase 
Adult neurogenesis occurs in two discrete regions of the adult mammalian brain, the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Signaling mechanisms regulating adult neurogenesis in the SGZ are currently an active area of investigation. Adult-born neurons in the DG functionally integrate into the hippocampal circuitry and form functional synapses, suggesting a role for these neurons in hippocampus-dependent memory formation. Although results from earlier behavioral studies addressing this issue were inconsistent, recent advances in conditional gene targeting technology, viral injection and optogenetic approaches have provided convincing evidence supporting a role for adult-born neurons in the more challenging forms of hippocampus-dependent learning and memory. Here, we briefly summarize these recent studies with a focus on extra signal-regulated kinase (ERK) 5, a MAP kinase whose expression in the adult brain is restricted to the neurogenic regions including the SGZ and SVZ. We review evidence identifying ERK5 as a novel endogenous signaling pathway that regulates the pro-neural transcription factor Neurogenin 2, is activated by neurotrophins and is critical for adult neurogenesis. We discuss studies demonstrating that specific deletion of ERK5 in the adult neurogenic regions impairs several forms of hippocampus-dependent memory formation in mice. These include contextual fear memory extinction, the establishment and maintenance of remote contextual fear memory, and several other challenging forms of hippocampus-dependent memory formation including 48 h memory for novel object recognition, contextual fear memory established by a weak foot shock, pattern separation, and reversal of spatial learning and memory. We also briefly discuss current evidence that increasing adult neurogenesis, by small molecules or genetic manipulation, improves memory formation and long-term memory.
PMCID: PMC3782100  PMID: 23871742
2.  Genetic Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis and Extends Hippocampus-Dependent Long-Term Memory 
The Journal of Neuroscience  2014;34(6):2130-2147.
Recent studies have shown that inhibition of adult neurogenesis impairs the formation of hippocampus-dependent memory. However, it is not known whether increasing adult neurogenesis affects the persistence of hippocampus-dependent long-term memory. Furthermore, signaling mechanisms that regulate adult neurogenesis are not fully defined. We recently reported that the conditional and targeted knock-out of ERK5 MAP kinase in adult neurogenic regions of the mouse brain attenuates adult neurogenesis in the hippocampus and disrupts several forms of hippocampus-dependent memory. Here, we developed a gain-of-function knock-in mouse model to specifically activate endogenous ERK5 in the neurogenic regions of the adult brain. We report that the selective and targeted activation of ERK5 increases adult neurogenesis in the dentate gyrus by enhancing cell survival, neuronal differentiation, and dendritic complexity. Conditional ERK5 activation also improves the performance of challenging forms of spatial learning and memory and extends hippocampus-dependent long-term memory. We conclude that enhancing signal transduction of a single signaling pathway within adult neural stem/progenitor cells is sufficient to increase adult neurogenesis and improve the persistence of hippocampus-dependent memory. Furthermore, activation of ERK5 may provide a novel therapeutic target to improve long-term memory.
PMCID: PMC3913867  PMID: 24501354
adult neurogenesis; ERK5; MAP kinase; memory persistence; spatial learning
3.  A Hydroxylated Metabolite of Flame-Retardant PBDE-47 Decreases the Survival, Proliferation, and Neuronal Differentiation of Primary Cultured Adult Neural Stem Cells and Interferes with Signaling of ERK5 MAP Kinase and Neurotrophin 3 
Toxicological Sciences  2013;134(1):111-124.
Polybrominated diphenyl ethers (PBDEs) are a group of organobromine compounds widely used as flame retardants. PBDE-47 is one of the most prominent PBDE congeners found in human tissues, and it can be transformed into several metabolites, including 6-OH-PBDE-47. Recent studies have shown that PBDE-47 is neurotoxic to animals and possibly humans. However, the basis for the neurotoxicity of PBDEs and their metabolites is unclear. For example, it is not known whether PBDEs affect adult neurogenesis, a process implicated in learning and memory and in olfactory behavior. In this study, we examined the toxicity of PBDEs for primary adult neural stem/progenitor cells (aNSCs) isolated from the subventricular zone (SVZ) of adult mice. We discovered that 6-OH-PBDE-47, but not its parent compound PBDE-47, is cytotoxic for aNCSs using MTS metabolism and cell number as a measure of cytotoxicity. Interestingly, 6-OH-PBDE-47 induced apoptosis at concentrations above 7.5μM inhibited proliferation at 2.5–5μM while suppressing neuronal and oligodendrocyte differentiation at submicromolar concentrations (≤ 1μM). The effect on proliferation was reversed upon removal of 6-OH-PBDE-47 and correlated with selective but reversible inhibition of ERK5 activation by mitogenic growth factors EGF and bFGF. 6-OH-PBDE-47 also inhibited the proneuronal differentiation effect of neurotrophin 3 (NT3) and NT3 activation of ERK5. Together, these data show that 6-OH-PBDE-47 is more toxic than its parent compound for SVZ-derived aNSCs and that it inhibits multiple aspects of adult neurogenesis. Furthermore, inhibition of ERK5 signaling may underlie the adverse effect of 6-OH-PBDE-47 on proliferation and neuronal differentiation. Our data suggest that exposure to PBDE-based flame retardants could cause neurotoxicity in the adult brain by interfering with adult neurogenesis.
PMCID: PMC3693129  PMID: 23564643
PBDE; neurotoxicity; adult neurogenesis; apoptosis; proliferation; neuronal differentiation
4.  Assessment of Adult Neurogenesis in Mice 
Adult neurogenesis is a life-long developmental process that occurs in two discrete regions in the adult mammalian brain: the subgranular zone of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Despite immense interest in the therapeutic potential of adult neural stem cells (aNSCs) residing along these two neurogenic regions, molecular and cellular mechanisms regulating this process are not fully defined. Defining the regulatory mechanisms responsible for the genesis of new neurons in the adult brain is integral to understanding the basic biology of aNSCs. The techniques described here provide a basic blueprint to isolate, culture, and perform experiments using aNSCs in vitro as well as providing methods to perform immunohistochemistry on brain sections.
PMCID: PMC3683539  PMID: 23670864
neurogenesis; adult neural stem cells; aNSC; immunohistochemistry; primary culture; primary cell isolation; brain section
5.  Correction: Inducible and Targeted Deletion of the ERK5 MAP Kinase in Adult Neurogenic Regions Impairs Adult Neurogenesis in the Olfactory Bulb and Several Forms of Olfactory Behavior 
PLoS ONE  2013;8(10):10.1371/annotation/c8d48e05-6465-4b1c-963a-ccab25274fa7.
PMCID: PMC3806869
6.  Targeted Deletion of the ERK5 MAP Kinase Impairs Neuronal Differentiation, Migration, and Survival during Adult Neurogenesis in the Olfactory Bulb 
PLoS ONE  2013;8(4):e61948.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.
PMCID: PMC3632513  PMID: 23630619
7.  The Maintenance of Established Remote Contextual Fear Memory Requires ERK5 MAP Kinase and Ongoing Adult Neurogenesis in the Hippocampus 
PLoS ONE  2012;7(11):e50455.
Adult neurogenesis in the dentate gyrus of the hippocampal formation has been implicated in several forms of hippocampus-dependent memory. However, its role in the persistence of remote memory is unknown. Furthermore, whether the hippocampus plays a role in maintaining remote contextual memories is controversial. Here we used an inducible gene-specific approach for conditional deletion of erk5 in the adult neurogenic regions of the mouse brain to specifically impair adult neurogenesis. The erk5 gene was conditionally deleted under three different experimental conditions: prior to training for contextual fear, 6 days after training, or 5 weeks after training, We present evidence that remote memory was impaired under all three conditions. These data demonstrate that ongoing adult neurogenesis is required both for the initial establishment and the continued maintenance of remote contextual fear memory, even after the remote memory has transferred into extra-hippocampal regions of the brain 5 weeks after training.
PMCID: PMC3506604  PMID: 23189204
8.  Inducible and Targeted Deletion of the ERK5 MAP Kinase in Adult Neurogenic Regions Impairs Adult Neurogenesis in the Olfactory Bulb and Several Forms of Olfactory Behavior 
PLoS ONE  2012;7(11):e49622.
Although adult-born neurons in the subventricular zone (SVZ) and olfactory bulb (OB) have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.
PMCID: PMC3504159  PMID: 23185386
9.  Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 MAP Kinase Specifically in Adult Neurogenic Regions Impairs Contextual Fear Memory Extinction and Remote Fear Memory 
The Journal of Neuroscience  2012;32(19):6444-6455.
Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 MAP kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knockout (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory including contextual fear conditioning generated by a weak foot shock. The ERK5 icKO mice were also deficient in extinction of contextual fear memory and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis is important for learning that requires active forgetting of a prior memory. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 days post-training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation including memory extinction, and for the expression of remote memory.
PMCID: PMC3363363  PMID: 22573667
10.  Targeted Deletion of ERK5 MAP Kinase in the Developing Nervous System Impairs Development of GABAergic Interneurons in the Main Olfactory Bulb and Behavioral Discrimination between Structurally Similar Odorants 
The Journal of Neuroscience  2012;32(12):4118-4132.
ERK5 MAP kinase is highly expressed in the developing nervous system and has been implicated in promoting the survival of immature neurons in culture. However, its role in the development and function of the mammalian nervous system has not been established in vivo. Here, we report that conditional deletion of the erk5 gene in mouse neural stem cells during development reduces the number of GABAergic interneurons in the main olfactory bulb (OB). Our data suggest that this is due to a decrease in proliferation and an increase in apoptosis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of ERK5 mutant mice. Interestingly, ERK5 mutant mice have smaller OB and are impaired in odor discrimination between structurally similar odorants. We conclude that ERK5 is a novel signaling pathway regulating developmental OB neurogenesis and olfactory behavior.
PMCID: PMC3333842  PMID: 22442076
11.  ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis 
PLoS ONE  2009;4(4):e5204.
The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors.
PMCID: PMC2664926  PMID: 19365559
12.  Prolonged Adherence of Human Immunodeficiency Virus-Derived Vector Particles to Hematopoietic Target Cells Leads to Secondary Transduction In Vitro and In Vivo▿  
Journal of Virology  2006;81(2):639-649.
Human immunodeficiency virus type 1-derived lentivirus vectors bearing the vesicular stomatitis virus G (VSV-G) envelope glycoprotein demonstrate a wide host range and can stably transduce quiescent hematopoietic stem cells. In light of concerns about biosafety and potential germ line transmission, they have been used predominantly for ex vivo strategies, thought to ensure the removal of excess surface-bound particles and prevent in vivo dissemination. Studies presented here instead reveal prolonged particle adherence after ex vivo exposure, despite serial wash procedures, with subsequent transduction of secondary target cells in direct and transwell cocultures. We explored the critical parameters affecting particle retention and transfer and show that attachment to the cell surface selectively protects virus particles from serum complement-mediated inactivation. Moreover, studies with nonmyeloablated murine recipients show that transplantation of vector-exposed, washed hematopoietic cells results in systemic dissemination of functional VSV-G/lentivector particles. We demonstrate genetic marking by inadvertent transfer of vector particles and prolonged expression of transgene product in recipient tissues. Our findings have implications for biosafety, vector design, and cell biology research.
PMCID: PMC1797443  PMID: 17035328
13.  Movement Protein of a Closterovirus Is a Type III Integral Transmembrane Protein Localized to the Endoplasmic Reticulum 
Journal of Virology  2004;78(7):3704-3709.
Cell-to-cell movement of beet yellows closterovirus requires four structural proteins and a 6-kDa protein (p6) that is a conventional, nonstructural movement protein. Here we demonstrate that either virus infection or p6 overexpression results in association of p6 with the rough endoplasmic reticulum. The p6 protein possesses a single-span, transmembrane, N-terminal domain and a hydrophilic, C-terminal domain that is localized on the cytoplasmic face of the endoplasmic reticulum. In the infected cells, p6 forms a disulfide bridge via a cysteine residue located near the protein's N terminus. Mutagenic analyses indicated that each of the p6 domains, as well as protein dimerization, is essential for p6 function in virus movement.
PMCID: PMC371079  PMID: 15016890

Results 1-13 (13)