Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Ecology and management of grapevine leafroll disease 
Grapevine leafroll disease (GLD) is caused by a complex of vector-borne virus species in the family Closteroviridae. GLD is present in all grape-growing regions of the world, primarily affecting wine grape varieties. The disease has emerged in the last two decades as one of the major factors affecting grape fruit quality, leading to research efforts aimed at reducing its economic impact. Most research has focused on the pathogens themselves, such as improved detection protocols, with limited work directed toward disease ecology and the development of management practices. Here we discuss the ecology and management of GLD, focusing primarily on Grapevine leafroll-associated virus 3, the most important virus species within the complex. We contextualize research done on this system within an ecological framework that forms the backbone of the discussion regarding current and potential GLD management strategies. To reach this goal, we introduce various aspects of GLD biology and ecology, followed by disease management case studies from four different countries and continents (South Africa, New Zealand, California-USA, and France). We review ongoing regional efforts that serve as models for improved strategies to control this economically important and worldwide disease, highlighting scientific gaps that must be filled for the development of knowledge-based sustainable GLD management practices.
PMCID: PMC3633934  PMID: 23630520
grapevine disease; Closteroviridae; vector; mealybug; integrated pest management
2.  Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance 
Biology Direct  2009;4:21.
Previous studies have revealed a wide-spread occurence of the partial and complete genomes of the reverse-transcribing pararetroviruses in the nuclear genomes of herbaceous plants. Although the absence of the virus-encoded integrases attests to the random and incidental incorporation of the viral sequences, their presence could have functional implications for the virus-host interactions.
Analyses of two nuclear genomes of grapevine revealed multiple events of horizontal gene transfer from pararetroviruses. The ~200–800 bp inserts that corresponded to partial ORFs encoding reverse transcriptase apparently derived from unknown or extinct caulimoviruses and tungroviruses, were found in 11 grapevine chromosomes. In contrast to the previous reports, no reliable cases of the inserts derived from the positive-strand RNA viruses were found. Because grapevine is known to be infected by the diverse positive-strand RNA viruses, but not pararetroviruses, we hypothesize that pararetroviral inserts have conferred host resistance to these viruses. Furthermore, we propose that such resistance involves RNA interference-related mechanisms acting via small RNA-mediated methylation of pararetroviral DNAs and/or via degradation of the viral mRNAs.
The pararetroviral sequences in plant genomes may be maintained due to the benefits of virus resistance to this class of viruses conferred by their presence. Such resistance could be particularly significant for the woody plants that must withstand years- to centuries-long virus assault. Experimental research into the RNA interference pathways involving the integrated pararetroviral inserts is required to test this hypothesis.
This article was reviewed by Arcady R. Mushegian, I. King Jordan, and Eugene V. Koonin.
PMCID: PMC2714080  PMID: 19558678
3.  The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid 
Journal of Virology  2005;79(15):9685-9693.
Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD.
PMCID: PMC1181584  PMID: 16014930

Results 1-3 (3)