PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding▿  
Molecular and Cellular Biology  2010;30(7):1814-1827.
Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8−/− mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2′-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8−/− mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8−/− mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.
doi:10.1128/MCB.01602-09
PMCID: PMC2838068  PMID: 20123966
2.  Protozoan ALKBH8 Oxygenases Display both DNA Repair and tRNA Modification Activities 
PLoS ONE  2014;9(6):e98729.
The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1–8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.
doi:10.1371/journal.pone.0098729
PMCID: PMC4051686  PMID: 24914785
3.  Ikbkap/Elp1 Deficiency Causes Male Infertility by Disrupting Meiotic Progression 
PLoS Genetics  2013;9(5):e1003516.
Mouse Ikbkap gene encodes IKAP—one of the core subunits of Elongator—and is thought to be involved in transcription. However, the biological function of IKAP, particularly within the context of an animal model, remains poorly characterized. We used a loss-of-function approach in mice to demonstrate that Ikbkap is essential for meiosis during spermatogenesis. Absence of Ikbkap results in defects in synapsis and meiotic recombination, both of which result in increased apoptosis and complete arrest of gametogenesis. In Ikbkap-mutant testes, a few meiotic genes are down-regulated, suggesting IKAP's role in transcriptional regulation. In addition, Ikbkap-mutant testes exhibit defects in wobble uridine tRNA modification, supporting a conserved tRNA modification function from yeast to mammals. Thus, our study not only reveals a novel function of IKAP in meiosis, but also suggests that IKAP contributes to this process partly by exerting its effect on transcription and tRNA modification.
Author Summary
The process of meiosis is responsible for gamete formation and ensures that offspring will inherit a complete set of chromosomes from each parent. Errors arising during this process generally result in spontaneous abortions, birth defects, or infertility. Many genes that are essential in regulating meiosis have also been implicated in DNA repair. Importantly, defects in DNA repair are common causes of cancers. Therefore, identification of genes important for normal meiosis contributes not only to the field of reproduction but also to the field of cancer biology. We studied the effects of deleting mouse Ikbkap, a gene that encodes one of the subunit of the Elongator complex initially described as an RNA polymerase II–associated transcription elongation factor. We demonstrate that Ikbkap mutant mice exhibit infertility and defects in meiotic progression. Specifically, homologous and sex chromosomes fail to synapse (become associated), DNA double-strand breaks are inefficiently repaired, and DNA crossovers are significantly decreased in Ikbkap males. We also demonstrate that the requirement for Elongator in tRNA modification, which has been shown in lower eukaryotes, is conserved in mammals. Our findings suggest novel roles for Ikbkap in meiosis progression and tRNA modification, which have not been reported previously.
doi:10.1371/journal.pgen.1003516
PMCID: PMC3662645  PMID: 23717213
4.  Human ALKBH4 Interacts with Proteins Associated with Transcription 
PLoS ONE  2012;7(11):e49045.
The Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from E. coli is a demethylase which repairs alkyl lesions in DNA, as well as RNA, through a direct reversal mechanism. Humans possess nine AlkB homologs (ALKBH1-8 and FTO). ALKBH2 and ALKBH3 display demethylase activities corresponding to that of AlkB, and both ALKBH8 and FTO are RNA modification enzymes. The biochemical functions of the rest of the homologs are still unknown. To increase our knowledge on the functions of ALKBH4 and ALKBH7 we have here performed yeast two-hybrid screens to identify interaction partners of the two proteins. While no high-confidence hits were detected in the case of ALKBH7, several proteins associated with chromatin and/or involved in transcription were found to interact with ALKBH4. For all interaction partners, the regions mediating binding to ALKBH4 comprised domains previously reported to be involved in interaction with DNA or chromatin. Furthermore, some of these partners showed nuclear co-localization with ALKBH4. However, the global gene expression pattern was only marginally altered upon ALKBH4 over-expression, and larger effects were observed in the case of ALKBH7. Although the molecular function of both proteins remains to be revealed, our findings suggest a role for ALKBH4 in regulation of gene expression or chromatin state.
doi:10.1371/journal.pone.0049045
PMCID: PMC3493508  PMID: 23145062
5.  The DNA dioxygenase ALKBH2 protects Arabidopsis thaliana against methylation damage 
Nucleic Acids Research  2012;40(14):6620-6631.
The Escherichia coli AlkB protein (EcAlkB) is a DNA repair enzyme which reverses methylation damage such as 1-methyladenine (1-meA) and 3-methylcytosine (3-meC). The mammalian AlkB homologues ALKBH2 and ALKBH3 display EcAlkB-like repair activity in vitro, but their substrate specificities are different, and ALKBH2 is the main DNA repair enzyme for 1-meA in vivo. The genome of the model plant Arabidopsis thaliana encodes several AlkB homologues, including the yet uncharacterized protein AT2G22260, which displays sequence similarity to both ALKBH2 and ALKBH3. We have here characterized protein AT2G22260, by us denoted ALKBH2, as both our functional studies and bioinformatics analysis suggest it to be an orthologue of mammalian ALKBH2. The Arabidopsis ALKBH2 protein displayed in vitro repair activities towards methyl and etheno adducts in DNA, and was able to complement corresponding repair deficiencies of the E. coli alkB mutant. Interestingly, alkbh2 knock-out plants were sensitive to the methylating agent methylmethanesulphonate (MMS), and seedlings from these plants developed abnormally when grown in the presence of MMS. The present study establishes ALKBH2 as an important enzyme for protecting Arabidopsis against methylation damage in DNA, and suggests its homologues in other plants to have a similar function.
doi:10.1093/nar/gks327
PMCID: PMC3413135  PMID: 22532610
6.  Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA 
Nucleic Acids Research  2011;39(17):7688-7701.
Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or derivatives thereof. Here, we demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm5U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm5U to (S)-mchm5U in tRNAGlyUCC, and has a function similar to the mammalian dioxygenase ALKBH8. Interestingly, atalkbh8 mutant plants displayed strongly increased levels of mcm5U, and also of mcm5Um, its 2′-O-ribose methylated derivative. This suggests that accumulated mcm5U is prone to further ribose methylation by a non-specialized mechanism, and may challenge the notion that the existence of mcm5U- and mcm5Um-containing forms of the selenocysteine-specific tRNASec in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines.
doi:10.1093/nar/gkr406
PMCID: PMC3177185  PMID: 21653555
7.  Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4 
Biochemical Journal  2011;434(Pt 3):391-398.
The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV–visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a gmax of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.
doi:10.1042/BJ20101667
PMCID: PMC3048578  PMID: 21166655
AlkB; AlkB homologue (ALKBH4); EPR; non-haem Fe; UV–visible spectroscopy; ALKBH, AlkB homologue; FTO, fat mass and obesity-associated protein; GST, glutathione transferase; ICP-AEP, inductively coupled plasma atomic emission spectroscopy; IPNS, isopenicillin N synthase; IPTG, isopropyl β-D-thiogalactopyranoside; MV•+, Methyl Viologen radical cation; 2OG, 2-oxoglutarate; PAH, phenylalanine hydroxylase; 4,5-PCD, protocatechuate 4,5-dioxygenase; TauD, taurine dioxygenase; UV–Vis, UV–visible; ZFS, zero-field splitting
8.  Bioinformatics and functional analysis define four distinct groups of AlkB DNA-dioxygenases in bacteria 
Nucleic Acids Research  2009;37(21):7124-7136.
The iron(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from Escherichia coli (EcAlkB) repairs alkylation damage in DNA by direct reversal. EcAlkB substrates include methylated bases, such as 1-methyladenine (m1A) and 3-methylcytosine (m3C), as well as certain bulkier lesions, for example the exocyclic adduct 1,N6-ethenoadenine (εA). EcAlkB is the only bacterial AlkB protein characterized to date, and we here present an extensive bioinformatics and functional analysis of bacterial AlkB proteins. Based on sequence phylogeny, we show that these proteins can be subdivided into four groups: denoted 1A, 1B, 2A and 2B; each characterized by the presence of specific conserved amino acid residues in the putative nucleotide-recognizing domain. A scattered distribution of AlkB proteins from the four different groups across the bacterial kingdom indicates a substantial degree of horizontal transfer of AlkB genes. DNA repair activity was associated with all tested recombinant AlkB proteins. Notably, both a group 2B protein from Xanthomonas campestris and a group 2A protein from Rhizobium etli repaired etheno adducts, but had negligible activity on methylated bases. Our data indicate that the majority, if not all, of the bacterial AlkB proteins are DNA repair enzymes, and that some of these proteins do not primarily target methylated bases.
doi:10.1093/nar/gkp774
PMCID: PMC2790896  PMID: 19786499
9.  Viral AlkB proteins repair RNA damage by oxidative demethylation 
Nucleic Acids Research  2008;36(17):5451-5461.
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.
doi:10.1093/nar/gkn519
PMCID: PMC2553587  PMID: 18718927
10.  Repair of 3-methylthymine and 1-methylguanine lesions by bacterial and human AlkB proteins 
Nucleic Acids Research  2004;32(21):6260-6267.
The Escherichia coli AlkB protein repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions in DNA and RNA by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively. Here, we have studied the activity of AlkB proteins on 3-methylthymine (3-meT) and 1-methylguanine (1-meG), two minor lesions which are structurally analogous to 1-meA and 3-meC. AlkB as well as the human AlkB homologues, hABH2 and hABH3, were all able to demethylate 3-meT in a DNA oligonucleotide containing a single 3-meT residue. Also, 1-meG lesions introduced by chemical methylation of tRNA were efficiently removed by AlkB. Unlike 1-meA and 3-meC, nucleosides or bases corresponding to 1-meG or 3-meT did not stimulate the uncoupled, AlkB-mediated decarboxylation of 2-oxoglutarate. Our data show that 3-meT and 1-meG are repaired by AlkB, but indicate that the recognition of these substrates is different from that in the case of 1-meA and 3-meC.
doi:10.1093/nar/gkh964
PMCID: PMC535673  PMID: 15576352
11.  Substrate specificities of bacterial and human AlkB proteins 
Nucleic Acids Research  2004;32(11):3456-3461.
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.
doi:10.1093/nar/gkh655
PMCID: PMC443531  PMID: 15229293
12.  Probing Pores with Peptide Plugs 
The Journal of General Physiology  2000;115(4):417-420.
PMCID: PMC2233756  PMID: 10736309

Results 1-12 (12)