PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Enhancement or Attenuation of Disease by Deletion of Genes from Citrus Tristeza Virus 
Journal of Virology  2012;86(15):7850-7857.
Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.
doi:10.1128/JVI.00916-12
PMCID: PMC3421669  PMID: 22593155
2.  e-Book on Closteroviridae 
doi:10.3389/fmicb.2013.00411
PMCID: PMC3873501  PMID: 24409172
closterovirus; ampelovirus; crinivirus; Citrus tristeza virus; citrus tristeza
3.  3'-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals 'unique' features of gene expression strategy in the genus Ampelovirus 
Virology Journal  2010;7:180.
Background
The family Closteroviridae comprises genera with monopartite genomes, Closterovirus and Ampelovirus, and with bipartite and tripartite genomes, Crinivirus. By contrast to closteroviruses in the genera Closterovirus and Crinivirus, much less is known about the molecular biology of viruses in the genus Ampelovirus, although they cause serious diseases in agriculturally important perennial crops like grapevines, pineapple, cherries and plums.
Results
The gene expression and cis-acting elements of Grapevine leafroll-associated virus 3 (GLRaV-3; genus Ampelovirus) was examined and compared to that of other members of the family Closteroviridae. Six putative 3'-coterminal subgenomic (sg) RNAs were abundantly present in grapevine (Vitis vinifera) infected with GLRaV-3. The sgRNAs for coat protein (CP), p21, p20A and p20B were confirmed using gene-specific riboprobes in Northern blot analysis. The 5'-termini of sgRNAs specific to CP, p21, p20A and p20B were mapped in the 18,498 nucleotide (nt) virus genome and their leader sequences determined to be 48, 23, 95 and 125 nt, respectively. No conserved motifs were found around the transcription start site or in the leader sequence of these sgRNAs. The predicted secondary structure analysis of sequences around the start site failed to reveal any conserved motifs among the four sgRNAs. The GLRaV-3 isolate from Washington had a 737 nt long 5' nontranslated region (NTR) with a tandem repeat of 65 nt sequence and differed in sequence and predicted secondary structure with a South Africa isolate. Comparison of the dissimilar sequences of the 5'NTRs did not reveal any common predicted structures. The 3'NTR was shorter and more conserved. The lack of similarity among the cis-acting elements of the diverse viruses in the family Closteroviridae is another measure of the complexity of their evolution.
Conclusions
The results indicate that transcription regulation of GLRaV-3 sgRNAs appears to be different from members of the genus Closterovirus. An analysis of the genome sequence confirmed that GLRaV-3 has an unusually long 5'NTR of 737 nt compared to other monopartite members of the family Closteroviridae, with distinct differences in the sequence and predicted secondary structure when compared to the corresponding region of the GLRaV-3 isolate from South Africa.
doi:10.1186/1743-422X-7-180
PMCID: PMC2922190  PMID: 20682046
4.  Infection with Strains of Citrus Tristeza Virus Does Not Exclude Superinfection by Other Strains of the Virus▿  
Journal of Virology  2009;84(3):1314-1325.
Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruses, homologous interference initially was used as a test of virus relatedness to define whether two virus isolates were “strains” of the same virus or represented different viruses, and subsequently purposeful infection with a mild isolate was implemented as a protective measure against isolates of the virus causing severe disease. In this study we examined superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus. Thirteen naturally occurring isolates of CTV representing five different virus strains and a set of isolates originated from virus constructs engineered based on an infectious cDNA clone of T36 isolate of CTV, including hybrids containing sequences from different isolates, were examined for their ability to prevent superinfection by another isolate of the virus. We show that superinfection exclusion occurred only between isolates of the same strain and not between isolates of different strains. When isolates of the same strain were used for sequential plant inoculation, the primary infection provided complete exclusion of the challenge isolate, whereas isolates from heterologous strains appeared to have no effect on replication, movement or systemic infection by the challenge virus. Surprisingly, substitution of extended cognate sequences from isolates of the T68 or T30 strains into T36 did not confer the ability of resulting hybrid viruses to exclude superinfection by those donor strains. Overall, these results do not appear to be explained by mechanisms proposed previously for other viruses. Moreover, these observations bring an understanding of some previously unexplained fundamental features of CTV biology and, most importantly, build a foundation for the strategy of selecting mild isolates that would efficiently exclude severe virus isolates as a practical means to control CTV diseases.
doi:10.1128/JVI.02075-09
PMCID: PMC2812332  PMID: 19923189
5.  Citrus Tristeza Virus: Survival at the Edge of the Movement Continuum▿  
Journal of Virology  2008;82(13):6546-6556.
Systemic invasion of plants by viruses is thought to involve two processes: cell-to-cell movement between adjacent cells and long-distance movement that allows the virus to rapidly move through sieve elements and unload at the growing parts of the plant. There is a continuum of proportions of these processes that determines the degrees of systemic infection of different plants by different viruses. We examined the systemic distribution of Citrus tristeza virus (CTV) in citrus species with a range of susceptibilities. By using a “pure” culture of CTV from a cDNA clone and green fluorescent protein-labeled virus we show that both cell-to-cell and long-distance movement are unusually limited, and the degree of limitation varies depending on the citrus host. In the more-susceptible hosts CTV infected only a small portion of phloem-associated cells, and moreover, the number of infection sites in less-susceptible citrus species was substantially decreased further, indicating that long-distance movement was reduced in those hosts. Analysis of infection foci in the two most differential citrus species, Citrus macrophylla and sour orange, revealed that in the more-susceptible host the infection foci were composed of a cluster of multiple cells, while in the less-susceptible host infection foci were usually single cells, suggesting that essentially no cell-to-cell movement occurred in the latter host. Thus, CTV in sour orange represents a pattern of systemic infection in which the virus appears to function with only the long-distance movement mechanism, yet is able to survive in nature.
doi:10.1128/JVI.00515-08
PMCID: PMC2447058  PMID: 18434397
6.  Persistent Infection and Promiscuous Recombination of Multiple Genotypes of an RNA Virus within a Single Host Generate Extensive Diversity 
PLoS ONE  2007;2(9):e917.
Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses.
doi:10.1371/journal.pone.0000917
PMCID: PMC1975466  PMID: 17878952
7.  Effects of Modification of the Transcription Initiation Site Context on Citrus Tristeza Virus Subgenomic RNA Synthesis† 
Journal of Virology  2003;77(17):9232-9243.
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a positive-sense RNA genome of about 20 kb organized into 12 open reading frames (ORFs). The last 10 ORFs are expressed through 3′-coterminal subgenomic RNAs (sgRNAs) regulated in both amounts and timing. Additionally, relatively large amounts of complementary sgRNAs are produced. We have been unable to determine whether these sgRNAs are produced by internal promotion from the full-length template minus strand or by transcription from the minus-stranded sgRNAs. Understanding the regulation of 10 sgRNAs is a conceptual challenge. In analyzing commonalities of a replicase complex in producing so many sgRNAs, we examined initiating nucleotides of the sgRNAs. We mapped the 5′ termini of intermediate- (CP and p13) and low- (p18) produced sgRNAs that, like the two highly abundant sgRNAs (p20 and p23) previously mapped, all initiate with an adenylate. We then examined modifications of the initiation site, which has been shown to be useful in defining mechanisms of sgRNA synthesis. Surprisingly, mutation of the initiating nucleotide of the CTV sgRNAs did not prevent sgRNA accumulation. Based on our results, the CTV replication complex appears to initiate sgRNA synthesis with purines, preferably with adenylates, and is able to initiate synthesis using a nucleotide a few positions 5′ or 3′ of the native initiation nucleotide. Furthermore, the context of the initiation site appears to be a regulatory mechanism for levels of sgRNA production. These data do not support either of the established mechanisms for synthesis of sgRNAs, suggesting that CTV sgRNA production utilizes a different mechanism.
doi:10.1128/JVI.77.17.9232-9243.2003
PMCID: PMC187412  PMID: 12915539
8.  Transcription Strategy in a Closterovirus: a Novel 5′-Proximal Controller Element of Citrus Tristeza Virus Produces 5′- and 3′-Terminal Subgenomic RNAs and Differs from 3′ Open Reading Frame Controller Elements†  
Journal of Virology  2003;77(1):340-352.
Citrus tristeza virus (CTV) produces more than thirty 3′- or 5′-terminal subgenomic RNAs (sgRNAs) that accumulate to various extents during replication in protoplasts and plants. Among the most unusual species are two abundant populations of small 5′-terminal sgRNAs of approximately 800 nucleotides (nt) termed low-molecular-weight tristeza (LMT1 and LMT2) RNAs. Remarkably, CTV replicons with all 10 3′ genes deleted produce only the larger LMT1 RNAs. These 5′-terminal positive-sense sgRNAs do not have corresponding negative strands and were hypothesized to be produced by premature termination during plus-strand genomic RNA synthesis. We characterized a cis-acting element that controls the production of the LMT1 RNAs. Since manipulation of this cis-acting element in its native position (the L-ProI region of replicase) was not possible because the mutations negatively affect replication, a region (5′TR) surrounding the putative termination sites (nt ∼550 to 1000) was duplicated in the 3′ end of a CTV replicon to allow characterization. The duplicated sequence continued to produce a 5′-terminal plus-strand sgRNA, here much larger (∼11 kb), apparently by termination. Surprisingly, a new 3′-terminal sgRNA was observed from the duplicated 5′TR. A large 3′-terminal sgRNA resulting from the putative promoter activity of the native 5′TR was not observed, possibly because of the down-regulation of a promoter ∼19 kb from the 3′ terminus. However, we were able to observe a sgRNA produced from the native 5′TR of a small defective RNA, which placed the native 5′TR closer to the 3′ terminus, demonstrating sgRNA promoter activity of the native 5′TR. Deletion mutagenesis mapped the promoter and the terminator activities of the 5′TR (in the 3′ position in the CTV replicon) to a 57-nt region, which was folded by the MFOLD computer program into two stem-loops. Mutations in the putative stem-loop structures equally reduced or prevented production of both the 3′- and 5′-terminal sgRNAs. These mutations, when introduced in frame in the native 5′TR, similarly abolished the synthesis of the LMT1 RNAs and presumably the large 3′-terminal sgRNA while having no impact on replication, demonstrating that neither 5′- nor 3′-terminal sgRNA is necessary for replication of the replicon or full-length CTV in protoplasts. Differences between the 5′TR, which produced two plus-strand sgRNAs, and the cis-acting elements controlling the 3′ open reading frames, which produced additional minus-strand sgRNAs corresponding to the 3′-terminal mRNAs, suggest that the different sgRNA controller elements had different origins in the modular evolution of closteroviruses.
doi:10.1128/JVI.77.1.340-352.2003
PMCID: PMC140645  PMID: 12477839
9.  The p23 Protein of Citrus Tristeza Virus Controls Asymmetrical RNA Accumulation † 
Journal of Virology  2002;76(2):473-483.
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3′ genes expressed via a nested set of nine or ten 3′-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3′ genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3′-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required. Mutation of conserved cysteine residues to alanines in the zinc finger domain resulted in loss of activity of the p23 protein, suggesting involvement of the zinc finger in asymmetric RNA accumulation. The absence of p23 gene function was manifested by substantial increases in accumulation of negative-stranded RNAs and only modest decreases in positive-stranded RNAs. Moreover, the substantial decrease in the accumulation of negative-stranded coat protein (CP) sgRNA in the presence of the functional p23 gene resulted in a 12- to 15-fold increase in the expression of the CP gene. Apparently the excess negative-stranded sgRNA reduces the availability of the corresponding positive-stranded sgRNA as a messenger. Thus, the p23 protein controls asymmetric accumulation of CTV RNAs by downregulating negative-stranded RNA accumulation and indirectly increases expression of 3′ genes.
doi:10.1128/JVI.76.2.473-483.2002
PMCID: PMC136848  PMID: 11752137
10.  Functional Specialization and Evolution of Leader Proteinases in the Family Closteroviridae 
Journal of Virology  2001;75(24):12153-12160.
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.
doi:10.1128/JVI.75.24.12153-12160.2001
PMCID: PMC116111  PMID: 11711606
11.  Conundrum of the Lack of Defective RNAs (dRNAs) Associated with Tobamovirus Infections: dRNAs That Can Move Are Not Replicated by the Wild-Type Virus; dRNAs That Are Replicated by the Wild-Type Virus Do Not Move† 
Journal of Virology  2001;75(12):5518-5525.
Two classes of artificially constructed defective RNAs (dRNAs) of Tobacco mosaic virus (TMV) were examined in planta with helper viruses that expressed one (183 kDa) or both (126 and 183 kDa) of the replicase-associated proteins. The first class of artificially constructed dRNAs had the helicase and polymerase (POL) domains deleted; the second had an intact 126-kDa protein open reading frame (ORF). Despite extremely high levels of replication in protoplasts, the first class of dRNAs did not accumulate in plants. The dRNAs with an intact 126-kDa protein ORF were replicated at moderate levels in protoplasts and in planta when supported by a TMV mutant that expressed the 183-kDa protein but not the 126-kDa protein (183F). These dRNAs were not supported by helper viruses expressing both replicase-associated proteins. De novo dRNAs were generated in plants infected by 183F but not in plants infected with virus with the wild-type replicase. These novel dRNAs each contained a new stop codon near the location of the wild-type stop codon for the 126-kDa protein and had most of the POL domain deleted. The fact that only dRNAs that contained a complete 126-kDa protein ORF moved systemically suggests that expression of a functional 126-kDa protein or the presence of certain sequences and/or structures within this ORF is required for movement of dRNAs. At least two factors may contribute to the lack of naturally occurring dRNAs in association with wild-type TMV infections: an inability of TMV to support dRNAs that can move in plants and the inability of dRNAs that can be replicated by TMV to move in plants.
doi:10.1128/JVI.75.12.5518-5525.2001
PMCID: PMC114264  PMID: 11356959
12.  Sequences of Citrus Tristeza Virus Separated in Time and Space Are Essentially Identical† 
Journal of Virology  2000;74(15):6856-6865.
The first Citrus tristeza virus (CTV) genomes completely sequenced (19.3-kb positive-sense RNA), from four biologically distinct isolates, are unexpectedly divergent in nucleotide sequence (up to 60% divergence). Understanding of whether these large sequence differences resulted from recent evolution is important for the design of disease management strategies, particularly the use of genetically engineered mild (essentially symptomless)-strain cross protection and RNA-mediated transgenic resistance. The complete sequence of a mild isolate (T30) which has been endemic in Florida for about a century was found to be nearly identical to the genomic sequence of a mild isolate (T385) from Spain. Moreover, samples of sequences of other isolates from distinct geographic locations, maintained in different citrus hosts and also separated in time (B252 from Taiwan, B272 from Colombia, and B354 from California), were nearly identical to the T30 sequence. The sequence differences between these isolates were within or near the range of variability of the T30 population. A possible explanation for these results is that the parents of isolates T30, T385, B252, B272, and B354 have a common origin, probably Asia, and have changed little since they were dispersed throughout the world by the movement of citrus. Considering that the nucleotide divergence among the other known CTV genomes is much greater than those expected for strains of the same virus, the remarkable similarity of these five isolates indicates a high degree of evolutionary stasis in some CTV populations.
PMCID: PMC112203  PMID: 10888625
13.  Effect of Cordycepin Triphosphate on In Vitro RNA Synthesis by Plant Viral Replicases 
Journal of Virology  1979;29(2):811-814.
In vitro RNA synthesis by tobacco mosaic virus and cowpea chlorotic mottle virus replicase were inhibited by cordycepin triphosphate. Inhibition could be overcome with higher concentrations of ATP in assay mixtures but not with UTP. Products synthesized in vitro by tobacco mosaic virus RNA replicase in the presence of inhibitor revealed replicative form but not replicative intermediate RNAs. These results suggest that cordycepin triphosphate competes specifically with ATP and results in premature termination of viral RNA synthesis in vitro.
PMCID: PMC353220  PMID: 16789174

Results 1-13 (13)