Search tips
Search criteria

Results 1-1 (1)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Thermodynamic Stability of Histone H3 Is a Necessary but not Sufficient Driving Force for its Evolutionary Conservation 
PLoS Computational Biology  2011;7(1):e1001042.
Determining the forces that conserve amino acid positions in proteins across species is a fundamental pursuit of molecular evolution. Evolutionary conservation is driven by either a protein's function or its thermodynamic stability. Highly conserved histone proteins offer a platform to evaluate these driving forces. While the conservation of histone H3 and H4 “tail” domains and surface residues are driven by functional importance, the driving force behind the conservation of buried histone residues has not been examined. Using a computational approach, we determined the thermodynamically preferred amino acids at each buried position in H3 and H4. In agreement with what is normally observed in proteins, we find a significant correlation between thermodynamic stability and evolutionary conservation in the buried residues in H4. In striking contrast, we find that thermodynamic stability of buried H3 residues does not correlate with evolutionary conservation. Given that these H3 residues are not post-translationally modified and only regulate H3-H3 and H3-H4 stabilizing interactions, our data imply an unknown function responsible for driving conservation of these buried H3 residues.
Author Summary
Most proteins fold to a well-defined, three-dimensional structure, which can be delineated into the protein surface and its buried core. When comparing amino acid sequences of the same protein from different organisms, we would expect to find certain residue positions conserved due to the importance of that position in either maintaining the protein's function or its three-dimensional structure. In this study, we looked at residues in the buried core domains of histone proteins H3 and H4, which have no known function other than maintaining the three-dimensional structure of the protein. We find that perturbing protein stability (which is a measure of maintenance of the protein's structure) by mutating these residues compromises survival fitness in yeast. However, the stability conferred by buried amino acids of H3 alone cannot account for their evolutionary conservation, which is in striking contrast to other proteins where stability has been shown to be the driving force for sequence conservation. This conservation of H3 thus points to either new additional functions of H3 that have not been uncovered or a unique conservation mechanism that goes beyond survival pressure. These data therefore reveal a highly conserved domain that is distinct in its evolutionary conservation.
PMCID: PMC3017104  PMID: 21253558

Results 1-1 (1)