Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
2.  Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity 
Molecular Pain  2012;8:25.
The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (Ki = 44 μM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for β2- and β3-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions.
PMCID: PMC3495668  PMID: 22500608
3.  Glutathionylation at Cys-111 Induces Dissociation of Wild Type and FALS Mutant SOD1 Dimers 
Biochemistry  2011;50(32):7057-7066.
Mutation of the ubiquitous cytosolic enzyme Cu/Zn superoxide dismutase (SOD1) is hypothesized to cause familial amyotrophic lateral sclerosis (FALS) through structural destabilization leading to misfolding and aggregation. Considering the late onset of symptoms as well as the phenotypic variability among patients with identical SOD1 mutations, it is clear that nongenetic factor(s) impact ALS etiology and disease progression. Here we examine the effect of Cys-111 glutathionylation, a physiologically prevalent post-translational oxidative modification, on the stabilities of wild type SOD1 and two phenotypically diverse FALS mutants, A4V and I112T. Glutathionylation results in profound destabilization of SOD1WT dimers, increasing the equilibrium dissociation constant Kd to ~10−20 μM, comparable to that of the aggressive A4V mutant. SOD1A4V is further destabilized by glutathionylation, experiencing an ~30-fold increase in Kd. Dissociation kinetics of glutathionylated SOD1WT and SOD1A4V are unchanged, as measured by surface plasmon resonance, indicating that glutathionylation destabilizes these variants by decreasing association rate. In contrast, SOD1I112T has a modestly increased dissociation rate but no change in Kd when glutathionylated. Using computational structural modeling, we show that the distinct effects of glutathionylation on different SOD1 variants correspond to changes in composition of the dimer interface. Our experimental and computational results show that Cys-111 glutathionylation induces structural rearrangements that modulate stability of both wild type and FALS mutant SOD1. The distinct sensitivities of SOD1 variants to glutathionylation, a modification that acts in part as a coping mechanism for oxidative stress, suggest a novel mode by which redox regulation and aggregation propensity interact in ALS.
PMCID: PMC3281512  PMID: 21739997

Results 1-3 (3)