Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  High-resolution Xist binding maps reveal 2-step spreading during X-inactivation 
Nature  2013;504(7480):465-469.
The Xist long noncoding RNA (lncRNA) is essential for X-chromosome inactivation (XCI), the process by which mammals compensate for unequal numbers of sex chromosomes1-3. During XCI, Xist coats the future inactive X (Xi)4 and recruits Polycomb Repressive Complex 2 (PRC2) to the X-inactivation center (Xic)5. How Xist spreads silencing on a 150 Mb scale is unclear. Here we generate high-resolution maps of Xist binding on the X chromosome across a developmental time course using CHART-seq. In female cells undergoing XCI de novo, Xist follows a two-step mechanism, initially targeting gene-rich islands before spreading to intervening gene-poor domains. Xist is depleted from genes that escape XCI but may concentrate near escapee boundaries. Xist binding is linearly proportional to PRC2 density and H3 lysine 27 trimethylation (H3K27me3), suggesting co-migration of Xist and PRC2. Interestingly, when the Xi is acutely stripped off Xist in post-XCI cells, Xist recovers quickly within both gene-rich and -poor domains on a time-scale of hours instead of days, suggesting a previously primed Xi chromatin state. We conclude that Xist spreading takes distinct stage-specific forms: During initial establishment, Xist follows a two-step mechanism, but during maintenance, Xist spreads rapidly to both gene-rich and -poor regions.
PMCID: PMC3904790  PMID: 24162848
2.  N-terminal strands of filamin Ig domains act as a conformational switch under biological forces 
Proteins  2010;78(1):12-24.
Conformational changes of filamin A under stress have been postulated to play crucial roles in signaling pathways of cell responses. Direct observation of conformational changes under stress is beyond the resolution of current experimental techniques. On the other hand, computational studies are mainly limited to either traditional molecular dynamics simulations of short durations and high forces or simulations of simplified models. Here we perform all-atom discrete molecular dynamics (DMD) simulations to study thermally and force-induced unfolding of filamin A. The high conformational sampling efficiency of DMD allows us to observe force-induced unfolding of filamin A Ig domains under physiological forces. The computationally identified critical unfolding forces agree well with experimental measurements. Despite a large heterogeneity in the population of force-induced intermediate states, we find a common initial unfolding intermediate in all the Ig domains of filamin, where the N-terminal strand unfolds. We also study the thermal unfolding of several filamin Ig-like domains. We find that thermally induced unfolding features an early-stage intermediate state similar to the one observed in force-induced unfolding and characterized by N-terminal strand being unfurled. We propose that the N-terminal strand may act as a conformational switch that unfolds under physiological forces leading to exposure of cryptic binding sites, removal of native binding sites, and modulating the quaternary structure of domains.
PMCID: PMC2804786  PMID: 19514078

Results 1-2 (2)