Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-based Pose Scoring and Physical Force Field-based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening 
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening, which is most frequently manifested in the scoring functions’ inability to discriminate between true ligands versus known non-binders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from virtual screening. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of virtual screening in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (-scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in virtual screening studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE∷HMSCORE, ChemScore, PLP, and Chemgauss3, in six out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP∷LBX). We also compare our method with FLAP∷RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP∷RBLB, hinting effective directions for best VS applications. We suggest that this integrative virtual screening approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.
PMCID: PMC3264743  PMID: 22017385
2.  Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR datasets 
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict binding affinity of ligands in the CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study.
PMCID: PMC3183266  PMID: 21780807

Results 1-2 (2)