Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A comprehensive study design reveals treatment- and transcript abundance–dependent concordance between RNA-seq and microarray data 
Nature biotechnology  2014;32(9):926-932.
RNA-seq facilitates unbiased genome-wide gene-expression profiling. However, its concordance with the well-established microarray platform must be rigorously assessed for confident uses in clinical and regulatory application. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same set of liver samples of rats under varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOA). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is highly correlated with treatment effect size, gene-expression abundance and the biological complexity of the MOA. RNA-seq outperforms microarray (90% versus 76%) in DEG verification by quantitative PCR and the main gain is its improved accuracy for low expressed genes. Nonetheless, predictive classifiers derived from both platforms performed similarly. Therefore, the endpoint studied and its biological complexity, transcript abundance, and intended application are important factors in transcriptomic research and for decision-making.
PMCID: PMC4243706  PMID: 25150839
2.  Do crystal structures obviate the need for theoretical models of GPCRs for structure based virtual screening 
Proteins  2012;80(6):1503-1521.
Recent highly expected structural characterizations of agonist-bound and antagonist-bound beta-2 adrenoreceptor (β2AR) by X-ray crystallography have been widely regarded as critical advances to enable more effective structure-based discovery of GPCRs ligands. It appears that this very important development may have undermined many previous efforts to develop 3D theoretical models of GPCRs. To address this question directly we have compared several historical β2AR models versus the inactive state and nanobody-stabilized active state of β2AR crystal structures in terms of their structural similarity and effectiveness of use in virtual screening for β2AR specific agonists and antagonists. Theoretical models, incluing both homology and de novo types, were collected from five different groups who have published extensively in the field of GPCRs modeling; all models were built before X-ray structures became available. In general, β2AR theoretical models differ significantly from the crystal structure in terms of TMH definition and the global packing. Nevertheless, surprisingly, several models afforded hit rates resulting from virtual screening of large chemical library enriched by known β2AR ligands that exceeded those using X-ray structures; the hit rates were particularly higher for agonists. Furthemore, the screening performance of models is associated with local structural quality such as the RMSDs for binding pocket residues and the ability to capture accurately most if not all critical protein/ligand interactions. These results suggest that carefully built models of GPCRs could capture critical chemical and structural features of the binding pocket thus may be even more useful for practical structure-based drug discovery than X-ray structures.
PMCID: PMC4133977  PMID: 22275072
GPCRs modeling; crystallography; beta-2 adrenoreceptor; agonist-bound; antagonist-bound; molecular docking; enrichment factor
3.  Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway 
Scientific Reports  2014;4:5664.
The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα β-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals.
PMCID: PMC4092345  PMID: 25012808
4.  Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology 
PLoS ONE  2014;9(6):e99863.
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
PMCID: PMC4064997  PMID: 24950175
5.  Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-based Pose Scoring and Physical Force Field-based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening 
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening, which is most frequently manifested in the scoring functions’ inability to discriminate between true ligands versus known non-binders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from virtual screening. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of virtual screening in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (-scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in virtual screening studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE∷HMSCORE, ChemScore, PLP, and Chemgauss3, in six out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP∷LBX). We also compare our method with FLAP∷RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP∷RBLB, hinting effective directions for best VS applications. We suggest that this integrative virtual screening approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.
PMCID: PMC3264743  PMID: 22017385
6.  Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR datasets 
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict binding affinity of ligands in the CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study.
PMCID: PMC3183266  PMID: 21780807

Results 1-6 (6)