PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (130)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Utility of rpoB Gene Sequencing for Identification of Nontuberculous Mycobacteria in the Netherlands 
Journal of Clinical Microbiology  2014;52(7):2544-2551.
In the Netherlands, clinical isolation of nontuberculous mycobacteria (NTM) has increased over the past decade. Proper identification of isolates is important, as NTM species differ strongly in clinical relevance. Most of the currently applied identification methods cannot distinguish between all different Mycobacterium species and complexes within species. rpoB gene sequencing exhibits a promising level of discrimination among rapidly and slowly growing mycobacteria, including the Mycobacterium avium complex. In this study, we prospectively compared rpoB gene sequencing with our routine algorithm of reverse line blot identification combined with partial 16S rRNA gene sequencing of 455 NTM isolates. rpoB gene sequencing identified 403 isolates to species level as 45 different known species and identified 44 isolates to complex level, and eight isolates remained unidentifiable to species level. In contrast, our reference reverse line blot assay with adjunctive 16S rRNA gene sequencing identified 390 isolates to species level (30 distinct species) and identified 56 isolates to complex level, and nine isolates remained unidentified. The higher discriminatory power of rpoB gene sequencing results largely from the distinction of separate species within complexes and subspecies. Also, Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium interjectum were separated into multiple groupings with relatively low sequence similarity (98 to 94%), suggesting that these are complexes of closely related species. We conclude that rpoB gene sequencing is a more discriminative identification technique than the combination of reverse line blot and 16S rRNA gene sequencing and could introduce a major improvement in clinical care of NTM disease and the research on the epidemiology and clinical relevance of NTM.
doi:10.1128/JCM.00233-14
PMCID: PMC4097680  PMID: 24808238
2.  Epidemiology of Isoniazid Resistance Mutations and Their Effect on Tuberculosis Treatment Outcomes 
Isoniazid resistance is highly prevalent in Vietnam. We investigated the molecular and epidemiological characteristics and the association with first-line treatment outcomes of the main isoniazid resistance mutations in Mycobacterium tuberculosis in codon 315 of the katG and in the promoter region of the inhA gene. Mycobacterium tuberculosis strains with phenotypic resistance to isoniazid from consecutively diagnosed smear-positive tuberculosis patients in rural Vietnam were subjected to Genotype MTBDRplus testing to identify katG and inhA mutations. Treatment failure and relapse were determined by sputum culture. In total, 227 of 251 isoniazid-resistant strains (90.4%) had detectable mutations: 75.3% in katG codon 315 (katG315) and 28.2% in the inhA promoter region. katG315 mutations were significantly associated with pretreatment resistance to streptomycin, rifampin, and ethambutol but not with the Beijing genotype and predicted both unfavorable treatment outcome (treatment failure or death) and relapse; inhA promoter region mutations were only associated with resistance to streptomycin and relapse. In tuberculosis patients, M. tuberculosis katG315 mutations but not inhA mutations are associated with unfavorable treatment outcome. inhA mutations do, however, increase the risk of relapse, at least with treatment regimens that contain only isoniazid and ethambutol in the continuation phase.
doi:10.1128/AAC.00077-13
PMCID: PMC3719713  PMID: 23689727
3.  Clustering of Tuberculosis Cases Based on Variable-Number Tandem-Repeat Typing in Relation to the Population Structure of Mycobacterium tuberculosis in the Netherlands 
Journal of Clinical Microbiology  2013;51(7):2427-2431.
The population structure of 3,776 Mycobacterium tuberculosis isolates was determined using variable-number tandem-repeat (VNTR) typing. The degree of clonality was so high that a more relaxed definition of clustering cannot be applied. Among recent immigrants with non-Euro-American isolates, transmission is overestimated if based on identical VNTR patterns.
doi:10.1128/JCM.00489-13
PMCID: PMC3697710  PMID: 23658260
4.  Comparative Study of IS6110 Restriction Fragment Length Polymorphism and Variable-Number Tandem-Repeat Typing of Mycobacterium tuberculosis Isolates in the Netherlands, Based on a 5-Year Nationwide Survey 
Journal of Clinical Microbiology  2013;51(4):1193-1198.
In order to switch from IS6110 and polymorphic GC-rich repetitive sequence (PGRS) restriction fragment length polymorphism (RFLP) to 24-locus variable-number tandem-repeat (VNTR) typing of Mycobacterium tuberculosis complex isolates in the national tuberculosis control program in The Netherlands, a detailed evaluation on discriminatory power and agreement with findings in a cluster investigation was performed on 3,975 tuberculosis cases during the period of 2004 to 2008. The level of discrimination of the two typing methods did not differ substantially: RFLP typing yielded 2,733 distinct patterns compared to 2,607 in VNTR typing. The global concordance, defined as isolates labeled unique or identically distributed in clusters by both methods, amounted to 78.5% (n = 3,123). Of the remaining 855 cases, 12% (n = 479) of the cases were clustered only by VNTR, 7.7% (n = 305) only by RFLP typing, and 1.8% (n = 71) revealed different cluster compositions in the two approaches. A cluster investigation was performed for 87% (n = 1,462) of the cases clustered by RFLP. For the 740 cases with confirmed or presumed epidemiological links, 92% were concordant with VNTR typing. In contrast, only 64% of the 722 cases without an epidemiological link but clustered by RFLP typing were also clustered by VNTR typing. We conclude that VNTR typing has a discriminatory power equal to IS6110 RFLP typing but is in better agreement with findings in a cluster investigation performed on an RFLP-clustering-based cluster investigation. Both aspects make VNTR typing a suitable method for tuberculosis surveillance systems.
doi:10.1128/JCM.03061-12
PMCID: PMC3666783  PMID: 23363841
7.  First Worldwide Proficiency Study on Variable-Number Tandem-Repeat Typing of Mycobacterium tuberculosis Complex Strains 
Journal of Clinical Microbiology  2012;50(3):662-669.
Although variable-number tandem-repeat (VNTR) typing has gained recognition as the new standard for the DNA fingerprinting of Mycobacterium tuberculosis complex (MTBC) isolates, external quality control programs have not yet been developed. Therefore, we organized the first multicenter proficiency study on 24-locus VNTR typing. Sets of 30 DNAs of MTBC strains, including 10 duplicate DNA samples, were distributed among 37 participating laboratories in 30 different countries worldwide. Twenty-four laboratories used an in-house-adapted method with fragment sizing by gel electrophoresis or an automated DNA analyzer, nine laboratories used a commercially available kit, and four laboratories used other methods. The intra- and interlaboratory reproducibilities of VNTR typing varied from 0% to 100%, with averages of 72% and 60%, respectively. Twenty of the 37 laboratories failed to amplify particular VNTR loci; if these missing results were ignored, the number of laboratories with 100% interlaboratory reproducibility increased from 1 to 5. The average interlaboratory reproducibility of VNTR typing using a commercial kit was better (88%) than that of in-house-adapted methods using a DNA analyzer (70%) or gel electrophoresis (50%). Eleven laboratories using in-house-adapted manual typing or automated typing scored inter- and intralaboratory reproducibilities of 80% or higher, which suggests that these approaches can be used in a reliable way. In conclusion, this first multicenter study has documented the worldwide quality of VNTR typing of MTBC strains and highlights the importance of international quality control to improve genotyping in the future.
doi:10.1128/JCM.00607-11
PMCID: PMC3295139  PMID: 22170917
8.  Optimization of Standard In-House 24-Locus Variable-Number Tandem-Repeat Typing for Mycobacterium tuberculosis and Its Direct Application to Clinical Material 
Journal of Clinical Microbiology  2014;52(5):1338-1342.
Variable-number tandem-repeat (VNTR) typing with a panel of 24 loci is the current gold standard in the molecular typing of Mycobacterium tuberculosis complex isolates. However, because of technical problems, a part of the loci often cannot be amplified by multiplex PCRs. Therefore, a considerable number of single-locus PCRs have to be performed for the loci with missing results, which impairs the laboratory work flow. Therefore, the original in-house method described by Supply et al. in 2006 was reevaluated. We modified seven primers and the PCR master mixture and obtained a strongly optimized in-house 24-locus VNTR typing method. The percentage of instantly complete 24-locus VNTR patterns detected in the routine flow of typing activities increased to 84.7% from the 72.3% obtained with the typing conducted with the commercially available Genoscreen MIRU-VNTR typing kit. The analytical sensitivity of the optimized in-house method was assessed by serial dilutions of M. tuberculosis in bronchoalveolar lavage fluid. A 1:10 dilution of the different strains tested was the lowest dilution for the detection of a complete 24-locus VNTR pattern. The optimized in-house 24-locus VNTR typing method will reduce the turnaround time of typing significantly and also the financial burden of these activities.
doi:10.1128/JCM.03436-13
PMCID: PMC3993658  PMID: 24501023
9.  Mycobacterium tuberculosis Beijing Genotype Resistance to Transient Rifampin Exposure 
Emerging Infectious Diseases  2014;20(11):522-3.
doi:10.3201/eid2011.130560
PMCID: PMC4214283  PMID: 25340553
tuberculosis; MDR TB; Beijing genotype strains; EAI genotype strains; H37Ra; antituberculosis drugs; rifampin; microcolony growth monitoring; Mycobacterium tuberculosis; tuberculosis and other mycobacteria; bacteria; antimicrobial resistance
10.  Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion 
mBio  2014;5(5):e01744-14.
ABSTRACT
Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, including Mycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria.
IMPORTANCE
Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.
doi:10.1128/mBio.01744-14
PMCID: PMC4173767  PMID: 25249284
11.  Optimizing multiplex SNP-based data analysis for genotyping of Mycobacterium tuberculosis isolates 
BMC Genomics  2014;15(1):572.
Background
Multiplex ligation-dependent probe amplification (MLPA) is a powerful tool to identify genomic polymorphisms. We have previously developed a single nucleotide polymorphism (SNP) and large sequence polymorphisms (LSP)-based MLPA assay using a read out on a liquid bead array to screen for 47 genetic markers in the Mycobacterium tuberculosis genome. In our assay we obtain information regarding the Mycobacterium tuberculosis lineage and drug resistance simultaneously. Previously we called the presence or absence of a genotypic marker based on a threshold signal level. Here we present a more elaborate data analysis method to standardize and streamline the interpretation of data generated by MLPA. The new data analysis method also identifies intermediate signals in addition to classification of signals as positive and negative. Intermediate calls can be informative with respect to identifying the simultaneous presence of sensitive and resistant alleles or infection with multiple different Mycobacterium tuberculosis strains.
Results
To validate our analysis method 100 DNA isolates of Mycobacterium tuberculosis extracted from cultured patient material collected at the National TB Reference Laboratory of the National Center for Tuberculosis and Lung Diseases in Tbilisi, Republic of Georgia were tested by MLPA. The data generated were interpreted blindly and then compared to results obtained by reference methods. MLPA profiles containing intermediate calls are flagged for expert review whereas the majority of profiles, not containing intermediate calls, were called automatically. No intermediate signals were identified in 74/100 isolates and in the remaining 26 isolates at least one genetic marker produced an intermediate signal.
Conclusion
Based on excellent agreement with the reference methods we conclude that the new data analysis method performed well. The streamlined data processing and standardized data interpretation allows the comparison of the Mycobacterium tuberculosis MLPA results between different experiments. All together this will facilitate the implementation of the MLPA assay in different settings.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-572) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-572
PMCID: PMC4117977  PMID: 25001491
Mycobacterium tuberculosis; MLPA; Data analysis; SNP typing; MAGPIX; Drug resistance; MTBC lineage; Republic of Georgia
12.  A Novel Approach - The Propensity to Propagate (PTP) Method for Controlling for Host Factors in Studying the Transmission of Mycobacterium Tuberculosis 
PLoS ONE  2014;9(5):e97816.
Rationale
Understanding the genetic variations among Mycobacterium tuberculosis (MTB) strains with differential ability to transmit would be a major step forward in preventing transmission.
Objectives
To describe a method to extend conventional proxy measures of transmissibility by adjusting for patient-related factors, thus strengthening the causal association found with bacterial factors.
Methods
Clinical, demographic and molecular fingerprinting data were obtained during routine surveillance of verified MTB cases reported in the Netherlands between 1993 and 2011, and the phylogenetic lineages of the isolates were inferred. Odds ratios for host risk factors for clustering were used to obtain a measure of each patient's and cluster's propensity to propagate (CPP). Mean and median cluster sizes across different categories of CPP were compared amongst four different phylogenetic lineages.
Results
Both mean and median cluster size grew with increasing CPP category. On average, CPP values from Euro-American lineage strains were higher than Beijing and EAI strains. There were no significant differences between the mean and median cluster sizes among the four phylogenetic lineages within each CPP category.
Conclusions
Our finding that the distribution of CPP scores was unequal across four different phylogenetic lineages supports the notion that host-related factors should be controlled for to attain comparability in measuring the different phylogenetic lineages' ability to propagate. Although Euro-American strains were more likely to be in clusters in an unadjusted analysis, no significant differences among the four lineages persisted after we controlled for host factors.
doi:10.1371/journal.pone.0097816
PMCID: PMC4029888  PMID: 24849817
13.  Comparison of 14 Molecular Assays for Detection of Mycobacterium tuberculosis Complex in Bronchoalveolar Lavage Fluid 
Journal of Clinical Microbiology  2013;51(11):3505-3511.
We compared 14 molecular assays for their ability to detect the Mycobacterium tuberculosis complex in bronchoalveolar lavage fluid samples. Three approaches were followed. First, by using DNA from Mycobacterium bovis BCG, we determined the detection limits of the assays using routine molecular methods. Second, in order to determine the analytical sensitivities of the assays, we added one of four M. tuberculosis isolates with various numbers of the insertion sequence IS6110 to N-acetyl-l-cysteine (NALC)-NaOH-treated bronchoalveolar lavage fluid samples in dilutions of 1:10 to 1:10,000,000. Third, intertest variabilities were measured and defined by the standard deviations for the quantitation cycle (Cq) values of three positive test results per dilution per assay. The 14 assays tested had similar analytical sensitivities, except for GeneXpert, which had an analytical sensitivity that was 10- to 100-fold lower than that of the other assays. The MP MTB/NTM test and the in-house TaqMan-10 revealed the best performances for the detection limit and had the highest analytical sensitivities. Most of the tests performed well regarding detection limit and analytical sensitivity for the detection of the M. tuberculosis complex in serial dilutions, and the differences were small. The MP MTB/NTM and the in-house TaqMan-10 assays revealed the best, and GeneXpert the worst, overall performances.
doi:10.1128/JCM.00843-13
PMCID: PMC3889726  PMID: 23966510
14.  Low Induction of Proinflammatory Cytokines Parallels Evolutionary Success of Modern Strains within the Mycobacterium tuberculosis Beijing Genotype 
Infection and Immunity  2013;81(10):3750-3756.
One of the most widespread clades of Mycobacterium tuberculosis worldwide, the Beijing genotype family, consists of ancient (atypical) and modern (typical) strains. Modern Beijing strains outcompete ancient strains in terms of prevalence, while reserving a higher degree of genetic conservation. We hypothesize that their selective advantage lies in eliciting a different host immune response. Bead-disrupted lysates of a collection of different M. tuberculosis strains of the modern (n = 7) or ancient (n = 7) Beijing genotype, as well as the Euro-American lineage (n = 6), were used for induction of ex vivo cytokine production in peripheral blood mononuclear cells (PBMCs) from 10 healthy individuals. Hierarchical clustering and multivariate regression analyses were used to study possible differences in production of nine cytokines. Modern and ancient M. tuberculosis Beijing genotypes induced different cytokine signatures. Overall induction of interleukin-1β (IL-1β), gamma interferon (IFN-γ), and IL-22 was 38 to 40% lower after stimulation with modern Beijing strains (corrected P values of <0.0001, 0.0288, and 0.0002, respectively). Euro-American reactivation strains induced 2-fold more TNF-α production than both types of Beijing strains. The observed differences in cytokine induction point to a reduction in proinflammatory cytokine response as a possible contributing factor to the evolutionary success of modern Beijing strains.
doi:10.1128/IAI.00282-13
PMCID: PMC3811744  PMID: 23897611
15.  Inventory study of non-tuberculous mycobacteria in the European Union 
Background
Since non-tuberculous mycobacteria (NTM) disease is not notifiable in most European Union (EU) and European Economic Area (EEA) countries, the epidemiological situation of the >150 NTM species is largely unknown. We aimed to collect data on the frequency of NTM detection and NTM species types in EU/EEA countries.
Methods
Officially nominated national tuberculosis reference laboratories of all EU/EEA countries were asked to provide information on: laboratory routines for detection and identification of NTM, including drug sensitivity testing (DST) methods; data on the number and type of NTM species identified; coverage and completeness of the provided data on NTM; type and number of human specimens tested for NTM; and number of specimens tested for Mycobacterium tuberculosis complex and NTM. This information was summarized and the main results are described.
Results
In total, 99 different NTM species were identified with M. avium, M. gordonae, M. xenopi , M. intracellulare, and M. fortuitum identified most frequently. Seven percent of the NTM species could not be identified. NTM was cultured from between 0.4-2.0% of the specimens (data from four countries). The laboratories use culturing methods optimised for M. tuberculosis complex. Identification is mainly carried out by a commercial line probe assay supplemented with sequencing. Most laboratories carried out DST for rapid growers and only at the explicit clinical request for slow growers.
Conclusion
It is likely that the prevalence of NTM is underestimated because diagnostic procedures are not optimized specifically for NTM and isolates may not be referred to the national reference laboratory for identification. Due to the diagnostic challenges and the need to establish the clinical relevance of NTM, we recommend that countries should concentrate detection and identification in only few laboratories.
doi:10.1186/1471-2334-14-62
PMCID: PMC3922012  PMID: 24502462
Non-tuberculous mycobacteria; Mycobacterioses; Epidemiology; European Union
16.  Predictive Value of Molecular Drug Resistance Testing of Mycobacterium tuberculosis Isolates in Valle del Cauca, Colombia 
Journal of Clinical Microbiology  2013;51(7):2220-2224.
Previous evaluations of the molecular GenoType tests have promoted their use to detect resistance to first- and second-line antituberculosis drugs in different geographical regions. However, there are known geographic variations in the mutations associated with drug resistance in Mycobacterium tuberculosis, and especially in South America, there is a paucity of information regarding the frequencies and types of mutations associated with resistance to first- and second-line antituberculosis drugs. We therefore evaluated the performance of the GenoType kits in this region by testing 228 M. tuberculosis isolates in Colombia, including 134 resistant and 94 pansusceptible strains. Overall, the sensitivity and specificity of the GenoType MTBDRplus test ranged from 92 to 96% and 97 to 100%, respectively; the agreement index was optimal (Cohen's kappa, >0.8). The sensitivity of the GenoType MTBDRsl test ranged from 84 to 100% and the specificity from 88 to 100%. The most common mutations were katG S315T1, rpoB S531L, embB M306V, gyrA D94G, and rrs A1401G. Our results reflect the utility of the GenoType tests in Colombia; however, as some discordance still exists between the conventional and molecular approaches in resistance testing, we adhere to the recommendation that the GenoType tests serve as early guides for therapy, followed by phenotypic drug susceptibility testing for all cases.
doi:10.1128/JCM.00429-13
PMCID: PMC3697673  PMID: 23658272
17.  Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography−Mass Spectrometry and Chemometrics 
PLoS ONE  2013;8(10):e76263.
Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.
doi:10.1371/journal.pone.0076263
PMCID: PMC3798606  PMID: 24146846
18.  Population Structure of Mixed Mycobacterium tuberculosis Infection Is Strain Genotype and Culture Medium Dependent 
PLoS ONE  2013;8(7):e70178.
Background
Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection.
Aim
This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein–Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes.
Method
A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes.
Results
The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with “other genotype” strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype.
Conclusion
The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.
doi:10.1371/journal.pone.0070178
PMCID: PMC3728311  PMID: 23936157
20.  Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954 
Journal of Bacteriology  2012;194(22):6339-6340.
Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.
doi:10.1128/JB.01462-12
PMCID: PMC3486380  PMID: 23105074
21.  Consequences of Noncompliance for Therapy Efficacy and Emergence of Resistance in Murine Tuberculosis Caused by the Beijing Genotype of Mycobacterium tuberculosis 
Despite great effort by health organizations worldwide in fighting tuberculosis (TB), morbidity and mortality are not declining as expected. One of the reasons is related to the evolutionary development of Mycobacterium tuberculosis, in particular the Beijing genotype strains. In a previous study, we showed the association between the Beijing genotype and an increased mutation frequency for rifampin resistance. In this study, we use a Beijing genotype strain and an East-African/Indian genotype strain to investigate with our mouse TB model whether the higher mutation frequency observed in a Beijing genotype strain is associated with treatment failure particularly during noncompliance therapy. Both genotype strains showed high virulence in comparison to that of M. tuberculosis strain H37Rv, resulting in a highly progressive infection with a rapid lethal outcome in untreated mice. Compliance treatment was effective without relapse of TB irrespective of the infecting strain, showing similar decreases in the mycobacterial load in infected organs and similar histopathological changes. Noncompliance treatment, simulated by a reduced duration and dosing frequency, resulted in a relapse of infection. Relapse rates were correlated with the level of noncompliance and were identical for Beijing infection and East African/Indian infection. However, only in Beijing-infected mice, isoniazid-resistant mutants were selected at the highest level of noncompliance. This is in line with the substantial selection of isoniazid-resistant mutants in vitro in a wide isoniazid concentration window observed for the Beijing strain and not for the EAI strain. These results suggest that genotype diversity of M. tuberculosis may be involved in emergence of resistance and indicates that genotype-tailor-made treatment should be investigated.
doi:10.1128/AAC.00124-12
PMCID: PMC3421871  PMID: 22802244
22.  Characterization of Mycobacterium orygis 
Emerging Infectious Diseases  2013;19(3):1708-9.
doi:10.3201/eid1903.121005
PMCID: PMC3647658  PMID: 23750365
tuberculosis and other mycobacteria; oryx bacillus; Mycobacterium orygis
23.  Mycobacterium tuberculosis Beijing Type Mutation Frequency 
Emerging Infectious Diseases  2013;19(3):522-523.
doi:10.3201/eid1903.121849
PMCID: PMC3647678  PMID: 23750367
Mycobacterium tuberculosis; drug resistance; mutation frequency; rifampin; tuberculosis and other mycobacteria; Beijing type
24.  Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data 
BMC Infectious Diseases  2013;13:110.
Background
Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of the rate of change in the genome over relevant timescales is required.
Methods
We attempted to estimate a molecular clock by sequencing 199 isolates from epidemiologically linked tuberculosis cases, collected in the Netherlands spanning almost 16 years.
Results
Multiple analyses support an average mutation rate of ~0.3 SNPs per genome per year. However, all analyses revealed a very high degree of variation around this mean, making the confirmation of links proposed by epidemiology, and inference of novel links, difficult. Despite this, in some cases, the phylogenetic context of other strains provided evidence supporting the confident exclusion of previously inferred epidemiological links.
Conclusions
This in-depth analysis of the molecular clock revealed that it is slow and variable over short time scales, which limits its usefulness in transmission studies. However, the superior resolution of whole genome sequencing can provide the phylogenetic context to allow the confident exclusion of possible transmission events previously inferred via traditional DNA fingerprinting techniques and epidemiological cluster investigation. Despite the slow generation of variation even at the whole genome level we conclude that the investigation of tuberculosis transmission will benefit greatly from routine whole genome sequencing.
doi:10.1186/1471-2334-13-110
PMCID: PMC3599118  PMID: 23446317
Mycobacterium tuberculosis; Molecular clock; Whole genome sequencing; Transmission; Epidemiology
25.  Clustering of Beijing genotype Mycobacterium tuberculosis isolates from the Mekong delta in Vietnam on the basis of variable number of tandem repeat versus restriction fragment length polymorphism typing 
Background
In comparison to restriction fragment length polymorphism (RFLP) typing, variable number of tandem repeat (VNTR) typing is easier to perform, faster and yields results in a simple, numerical format. Therefore, this technique has gained recognition as the new international gold standard in typing of Mycobacterium tuberculosis. However, some reports indicated that VNTR typing may be less suitable for Beijing genotype isolates. We therefore compared the performance of internationally standardized RFLP and 24 loci VNTR typing to discriminate among 100 Beijing genotype isolates from the Southern Vietnam.
Methods
Hundred Beijing genotype strains defined by spoligotyping were randomly selected and typed by RFLP and VNTR typing. The discriminatory power of VNTR and RFLP typing was compared using the Bionumerics software.
Results
Among 95 Beijing strains available for analysis, 14 clusters were identified comprising 34 strains and 61 unique profiles in 24 loci VNTR typing ((Hunter Gaston Discrimination Index (HGDI = 0.994)). 13 clusters containing 31 strains and 64 unique patterns in RFLP typing (HGDI = 0.994) were found. Nine RFLP clusters were subdivided by VNTR typing and 12 VNTR clusters were split by RFLP. Five isolates (5%) revealing double alleles or no signal in two or more loci in VNTR typing could not be analyzed.
Conclusions
Overall, 24 loci VNTR typing and RFLP typing had similar high-level of discrimination among 95 Beijing strains from Southern Vietnam. However, loci VNTR 154, VNTR 2461 and VNTR 3171 had hardly added any value to the level of discrimination.
doi:10.1186/1471-2334-13-63
PMCID: PMC3568002  PMID: 23375050

Results 1-25 (130)