Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  High-Temperature Protein G Is an Essential Virulence Factor of Leptospira interrogans 
Infection and Immunity  2014;82(3):1123-1131.
Leptospira interrogans is a global zoonotic pathogen and is the causative agent of leptospirosis, an endemic disease of humans and animals worldwide. There is limited understanding of leptospiral pathogenesis; therefore, further elucidation of the mechanisms involved would aid in vaccine development and the prevention of infection. HtpG (high-temperature protein G) is the bacterial homolog to the highly conserved molecular chaperone Hsp90 and is important in the stress responses of many bacteria. The specific role of HtpG, especially in bacterial pathogenesis, remains largely unknown. Through the use of an L. interrogans htpG transposon insertion mutant, this study demonstrates that L. interrogans HtpG is essential for virulence in the hamster model of acute leptospirosis. Complementation of the htpG mutant completely restored virulence. Surprisingly, the htpG mutant did not appear to show sensitivity to heat or oxidative stress, phenotypes common in htpG mutants in other bacterial species. Furthermore, the mutant did not show increased sensitivity to serum complement, reduced survival within macrophages, or altered protein or lipopolysaccharide expression. The underlying cause for attenuation thus remains unknown, but HtpG is a novel leptospiral virulence factor and one of only a very small number identified to date.
PMCID: PMC3958012  PMID: 24366253
2.  Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model 
PLoS ONE  2014;9(8):e104313.
The Gram-negative saprophytic bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a severe infectious disease of both humans and animals. Severity of the disease is thought to be dependent on both the health status of the host, including diabetes mellitus and kidney disease, and bacterial-derived factors. To identify the bacterial factors important during an acute infection, gene expression profiles in the spleen, lung, and liver of BALB/c (Th2 prototype) and C57BL/6 mice (Th1 prototype) were determined using DNA microarrays. This analysis identified BPSS1521 (bprD), a predicted transcriptional regulator located in the type III secretion system (T3SS-3) operon, to be up regulated, specifically in C57BL/6 mice. BALB/c mice infected with a bprD mutant showed a shorter time to death and increased inflammation, as determined by histopathological analysis and enumeration of bacteria in the spleen. Elevated numbers of multinucleated giant cells (MNGCs), which is the hallmark of melioidosis, were detected in both the wild-type and the bprD mutants; a similar elevation occurs in melioidosis patients. One striking observation was the increased expression of BPSS1520 (bprC), located downstream of bprD, in the bprD mutant. BprC is a regulator of T6SS-1 that is required for the virulence of B. pseudomallei in murine infection models. Deletion of bprD led to the overexpression of bprC and a decreased time to death. bprD expression was elevated in C57BL/6 —as compared to BALB/c—mice, suggesting a role for BprD in the natural resistance of C57BL/6 mice to B. pseudomallei. Ultimately, this analysis using mice with different immune backgrounds may enhance our understanding of the outcomes of infection in a variety of models.
PMCID: PMC4128674  PMID: 25111708
3.  Leptospiral LruA Is Required for Virulence and Modulates an Interaction with Mammalian Apolipoprotein AI 
Infection and Immunity  2013;81(10):3872-3879.
Leptospirosis is a worldwide zoonosis caused by spirochetes of the genus Leptospira. While understanding of pathogenesis remains limited, the development of mutagenesis in Leptospira has provided a powerful tool for identifying novel virulence factors. LruA is a lipoprotein that has been implicated in leptospiral uveitis as a target of the immune response. In this study, two lruA mutants, M754 and M765, generated by transposon mutagenesis from Leptospira interrogans serovar Manilae, were characterized. In M754, the transposon inserted in the middle of lruA, resulting in no detectable expression of LruA. In M765, the transposon inserted toward the 3′ end of the gene, resulting in expression of a truncated protein. LruA was demonstrated to be on the cell surface in M765 and the wild type (WT). M754, but not M765, was attenuated in a hamster model of acute infection. A search for differential binding to human serum proteins identified a serum protein of around 30 kDa bound to the wild type and the LruA deletion mutant (M754), but not to the LruA truncation mutant (M765). Two-dimensional separation of proteins from leptospiral cells incubated with guinea pig serum identified the 28-kDa apolipoprotein A-I (ApoA-I) as a major mammalian serum protein that binds Leptospira in vitro. Interestingly, M754 (with no detectable LruA) bound more ApoA-I than did the LruA-expressing strains Manilae wild type and M765. Our data thus identify LruA as a surface-exposed leptospiral virulence factor that contributes to leptospiral pathogenesis, possibly by modulating cellular interactions with serum protein ApoA-I.
PMCID: PMC3811782  PMID: 23918777
4.  Leptospiral Outer Membrane Protein LipL41 Is Not Essential for Acute Leptospirosis but Requires a Small Chaperone Protein, Lep, for Stable Expression 
Infection and Immunity  2013;81(8):2768-2776.
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.
PMCID: PMC3719587  PMID: 23690405
5.  Leptospira interrogans Catalase Is Required for Resistance to H2O2 and for Virulence 
Infection and Immunity  2012;80(11):3892-3899.
Pathogenic Leptospira spp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterized Leptospira interrogans catalase (KatE), the only annotated catalase found within pathogenic Leptospira species, by assessing its role in resistance to H2O2-induced oxidative stress and during infection in hamsters. Pathogenic L. interrogans bacteria had a 50-fold-higher survival rate under H2O2-induced oxidative stress than did saprophytic L. biflexa bacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenic Leptospira species. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation of katE in pathogenic Leptospira bacteria drastically diminished leptospiral viability in the presence of extracellular H2O2 and reduced virulence in an acute-infection model. Combined, these results suggest that L. interrogans KatE confers in vivo resistance to reactive oxygen species induced by the host innate immune response.
PMCID: PMC3486042  PMID: 22927050
6.  FlaA Proteins in Leptospira interrogans Are Essential for Motility and Virulence but Are Not Required for Formation of the Flagellum Sheath 
Infection and Immunity  2012;80(6):2019-2025.
Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.
PMCID: PMC3370569  PMID: 22451522
7.  Cationic Liposomes Extend the Immunostimulatory Effect of CpG Oligodeoxynucleotide against Burkholderia pseudomallei Infection in BALB/c Mice 
Melioidosis is a severe disease caused by the Gram-negative bacterium Burkholderia pseudomallei. Previously we showed that pretreatment of mice with CpG oligodeoxynucleotide (CpG ODN) 2 to 10 days prior to B. pseudomallei challenge conferred as high as 90% protection, but this window of protection was rather short. In the present study, we therefore aimed to prolong this protective window and to gain further insight into the mechanisms underlying the protection induced by CpG ODN against B. pseudomallei infection. It was found that the CpG ODN incorporated with cationic liposomes (DOTAP) but not zwitterionic liposomes (DOPC) provided complete protection against bacterial challenge. Although marked elevation of gamma interferon (IFN-γ) was found in the infected animals 2 days postinfection, it was significantly lowered by the DOTAP-plus-CpG ODN pretreatment. When appropriately activated, the phagocytic index and oxidative burst responses of neutrophils appeared not to be elevated. However, macrophages from stimulated mice showed higher levels of nitric oxide production and exhibited higher levels of antimicrobial activities, judging from lower numbers of viable intracellular bacteria. Taken together, our results demonstrate that DOTAP can enhance the protective window period of CpG ODN to at least 30 days and provide 100% protection against B. pseudomallei infection. The protective effect of DOTAP plus CpG ODN could provide an alternative approach to preventing this lethal infection, for which no vaccine is yet available.
PMCID: PMC3346326  PMID: 22441390
8.  Genomic Islands as a Marker to Differentiate between Clinical and Environmental Burkholderia pseudomallei 
PLoS ONE  2012;7(6):e37762.
Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil.
PMCID: PMC3365882  PMID: 22675491
9.  Cross-protective Immunity Against Leptospirosis Elicited by a Live, Attenuated Lipopolysaccharide Mutant 
The Journal of Infectious Diseases  2011;203(6):870-879.
Background. Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars.
Methods. We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated.
Results. Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona.
Conclusion. This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis.
PMCID: PMC3071135  PMID: 21220775
10.  Bacterial Loads and Antibody Responses in BALB/c Mice Infected with Low and High Doses of Burkholderia pseudomallei 
Profiles of Burkholderia pseudomallei persistence and antibodies in blood, spleen, liver, and lungs of infected BALB/c mice were investigated. Animals were infected intraperitoneally with low (6 colony-forming units) or high (230 colony-forming units) doses of B. pseudomallei. In the high-dose infected group, bacteria were found by culture in 100% of blood, liver, spleen and lung samples at 24 and 48 hours after infections; blood samples were 100% positive by polymerase chain reaction after 60 hours. Antibody responses in the high-dose infected group were low. These responses were detected in the low-dose infected group after 5 days, peaked at 7–14 days, and showed persistence until 28 days post-infection. Bacterial loads and antibody profiles varied according to the level of bacterial infections. This kinetic study, although in animals, provides crucial knowledge that might be useful for the development of a sensitive and specific diagnostic assay for patients with melioidosis.
PMCID: PMC2877418  PMID: 20519607
11.  Use of Luminescent Leptospira interrogans for Enumeration in Biological Assays▿  
Journal of Clinical Microbiology  2010;48(6):2037-2042.
Rapid and reliable in vitro methods for the detection of pathogenic leptospires, such as Leptospira interrogans, are lacking. The present study investigated the use of luminescence to replace the existing enumeration techniques. Transposon TnSC189 was modified to incorporate the luxCDABE cassette from Photorhabdus luminescens and was used to construct luminescent Leptospira spp. There was a linear relationship between luminescence and cell number, with the theoretical detection limit being less than 104 leptospires. A comparison of enumeration by a standard method (counting by dark-field microscopy) and enumeration by luminescence was conducted with luminescent L. interrogans. There was a good correlation between the two methods of enumeration (R2 = 0.766), although variation in the luminescence early and late in growth phase reduced the degree of correlation. To demonstrate the utility of luminescence as a viability and cell number reporter, in vitro assays, including MIC determination, an extracellular matrix binding experiment, and a complement killing experiment, were conducted. In each case, the results obtained by luminescence matched those obtained by traditional means with high correlations (binding assay R2 = 0.916, complement killing assay R2 = 0.988). A strain expressing the luxCDABE transposon retained virulence in the hamster model of infection. Despite some variation in luminescence as a result of the growth phase or the particular assay conditions, enumeration by luminescence was found to be a quick, reliable, and highly sensitive method for the in vitro detection of leptospires that has the potential to replace more time-consuming methods of enumeration.
PMCID: PMC2884486  PMID: 20375235
12.  Growing Burkholderia pseudomallei in Biofilm Stimulating Conditions Significantly Induces Antimicrobial Resistance 
PLoS ONE  2010;5(2):e9196.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear.
Methodology/Principal Findings
The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC) in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs) was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition.
The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.
PMCID: PMC2820546  PMID: 20169199
13.  Major Surface Protein LipL32 Is Not Required for Either Acute or Chronic Infection with Leptospira interrogans▿ †  
Infection and Immunity  2008;77(3):952-958.
Leptospira interrogans is responsible for leptospirosis, a zoonosis of worldwide distribution. LipL32 is the major outer membrane protein of pathogenic leptospires, accounting for up to 75% of total outer membrane protein. In recent times LipL32 has become the focus of intense study because of its surface location, dominance in the host immune response, and conservation among pathogenic species. In this study, an lipL32 mutant was constructed in L. interrogans using transposon mutagenesis. The lipL32 mutant had normal morphology and growth rate compared to the wild type and was equally adherent to extracellular matrix. Protein composition of the cell membranes was found to be largely unaffected by the loss of LipL32, with no obvious compensatory increase in other proteins. Microarray studies found no obvious stress response or upregulation of genes that may compensate for the loss of LipL32 but did suggest an association between LipL32 and the synthesis of heme and vitamin B12. When hamsters were inoculated by systemic and mucosal routes, the mutant caused acute severe disease manifestations that were indistinguishable from wild-type L. interrogans infection. In the rat model of chronic infection, the LipL32 mutant colonized the renal tubules as efficiently as the wild-type strain. In conclusion, this study showed that LipL32 does not play a role in either the acute or chronic models of infection. Considering the abundance and conservation of LipL32 among all pathogenic Leptospira spp. and its absence in saprophytic Leptospira, this finding is remarkable. The role of this protein in leptospiral biology and pathogenesis thus remains elusive.
PMCID: PMC2643616  PMID: 19103763
14.  Genome-Wide Transposon Mutagenesis in Pathogenic Leptospira Species▿ ‡  
Infection and Immunity  2008;77(2):810-816.
Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.
PMCID: PMC2632054  PMID: 19047402
15.  A Horizontal Gene Transfer Event Defines Two Distinct Groups within Burkholderia pseudomallei That Have Dissimilar Geographic Distributions▿ †  
Journal of Bacteriology  2007;189(24):9044-9049.
Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.
PMCID: PMC2168593  PMID: 17933898
16.  Fine-Scale Genetic Diversity among Burkholderia pseudomallei Soil Isolates in Northeast Thailand▿  
Applied and Environmental Microbiology  2007;73(20):6678-6681.
Burkholderia pseudomallei soil isolates from northeast Thailand were genotyped using multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) and multilocus sequence typing (MLST). MLVA identified 19 genotypes within three clades, while MLST revealed two genotypes. These close genetic relationships imply a recent colonization followed by localized expansion, similar to what occurs in an outbreak situation.
PMCID: PMC2075045  PMID: 17720819
17.  Immunostimulatory CpG Oligodeoxynucleotide Confers Protection in a Murine Model of Infection with Burkholderia pseudomallei  
Infection and Immunity  2004;72(8):4494-4502.
Although CpG oligodeoxynucleotides (CpG ODNs) are known to enhance resistance against infection in a number of animal models, little is known about the CpG-induced protection against acute fatal sepsis such as that associated with the highly virulent bacterium Burkholderia pseudomallei. We previously demonstrated in an in vitro study that immunostimulatory CpG ODN 1826 enhances phagocytosis of B. pseudomallei and induces nitric oxide synthase and nitric oxide production by mouse macrophages. In the present study, CpG ODN 1826 given intramuscularly to BALB/c mice 2 to 10 days prior to B. pseudomallei challenge conferred better than 90% protection. CpG ODN 1826 given 2 days before the bacterial challenge rapidly enhanced the innate immunity of these animals, judging from the elevated serum levels of interleukin-12 (IL-12)p70 and gamma interferon (IFN-γ) over the baseline values. No bacteremia was detected on day 2 in 85 to 90% of the CpG-treated animals, whereas more than 80% of the untreated animals exhibited heavy bacterial loads. Although marked elevation of IFN-γ was found consistently in the infected animals 2 days after the bacterial challenge, it was ameliorated by the CpG ODN 1826 pretreatment (P = 0.0002). Taken together, the kinetics of bacteremia and cytokine profiles presented are compatible with the possibility that protection by CpG ODN 1826 against acute fatal septicemic melioidosis in this animal model is associated with a reduction of bacterial load and interference with the potential detrimental effect of the robust production of proinflammatory cytokines associated with B. pseudomallei multiplication.
PMCID: PMC470634  PMID: 15271908

Results 1-17 (17)