PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Interaction of Leptospira interrogans with Human Proteolytic Systems Enhances Dissemination through Endothelial Cells and Protease Levels 
Infection and Immunity  2013;81(5):1764-1774.
We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date.
doi:10.1128/IAI.00020-13
PMCID: PMC3648023  PMID: 23478319
2.  OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp. 
Infection and Immunity  2012;80(10):3679-3692.
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
doi:10.1128/IAI.00474-12
PMCID: PMC3457549  PMID: 22802342
3.  Plasminogen Binding Proteins and Plasmin Generation on the Surface of Leptospira spp.: The Contribution to the Bacteria-Host Interactions 
Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.
doi:10.1155/2012/758513
PMCID: PMC3481863  PMID: 23118516
4.  "Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions" 
BMC Microbiology  2012;12:50.
Background
Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp.
Results
We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG.
Conclusions
We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
doi:10.1186/1471-2180-12-50
PMCID: PMC3444417  PMID: 22463075
5.  Characterization of Novel OmpA-Like Protein of Leptospira interrogans That Binds Extracellular Matrix Molecules and Plasminogen 
PLoS ONE  2011;6(7):e21962.
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (KD, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a KD of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
doi:10.1371/journal.pone.0021962
PMCID: PMC3130794  PMID: 21755014
6.  Development of Transcriptional Fusions to Assess Leptospira interrogans Promoter Activity 
PLoS ONE  2011;6(3):e17409.
Background
Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field.
Methodology and Principal Findings
A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain.
Conclusions
The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
doi:10.1371/journal.pone.0017409
PMCID: PMC3060810  PMID: 21445252
7.  Bioinformatics Describes Novel Loci for High Resolution Discrimination of Leptospira Isolates 
PLoS ONE  2010;5(10):e15335.
Background
Leptospirosis is one of the most widespread zoonoses in the world and with over 260 pathogenic serovars there is an urgent need for a molecular system of classification. The development of multilocus sequence typing (MLST) schemes for Leptospira spp. is addressing this issue. The aim of this study was to identify loci with potential to enhance Leptospira strain discrimination by sequencing-based methods.
Methodology and Principal Findings
We used bioinformatics to evaluate pre-existing loci with the potential to increase the discrimination of outbreak strains. Previously deposited sequence data were evaluated by phylogenetic analyses using either single or concatenated sequences. We identified and evaluated the applicability of the ligB, secY, rpoB and lipL41 loci, individually and in combination, to discriminate between 38 pathogenic Leptospira strains and to cluster them according to the species they belonged to. Pairwise identity among the loci ranged from 82.0–92.0%, while interspecies identity was 97.7–98.5%. Using the ligB-secY-rpoB-lipL41 superlocus it was possible to discriminate 34/38 strains, which belong to six pathogenic Leptospira species. In addition, the sequences were concatenated with the superloci from 16 sequence types from a previous MLST scheme employed to study the association of a leptospiral clone with an outbreak of human leptospirosis in Thailand. Their use enhanced the discriminative power of the existing scheme. The lipL41 and rpoB loci raised the resolution from 81.0–100%, but the enhanced scheme still remains limited to the L. interrogans and L. kirschneri species.
Conclusions
As the first aim of our study, the ligB-secY-rpoB-lipL41 superlocus demonstrated a satisfactory level of discrimination among the strains evaluated. Second, the inclusion of the rpoB and lipL41 loci to a MLST scheme provided high resolution for discrimination of strains within L. interrogans and L. kirschneri and might be useful in future epidemiological studies.
doi:10.1371/journal.pone.0015335
PMCID: PMC2955542  PMID: 21124728
8.  In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans 
PLoS ONE  2010;5(6):e11259.
Background
Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin.
Methodology/Principal Findings
We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin.
Conclusions/Significance
PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
doi:10.1371/journal.pone.0011259
PMCID: PMC2889836  PMID: 20582320
9.  Plasminogen Acquisition and Activation at the Surface of Leptospira Species Lead to Fibronectin Degradation ▿  
Infection and Immunity  2009;77(9):4092-4101.
Pathogenic Leptospira species are the etiological agents of leptospirosis, a widespread disease of human and veterinary concern. In this study, we report that Leptospira species are capable of binding plasminogen (PLG) in vitro. The binding to the leptospiral surface was demonstrated by indirect immunofluorescence confocal microscopy with living bacteria. The PLG binding to the bacteria seems to occur via lysine residues because the ligation is inhibited by addition of the lysine analog 6-aminocaproic acid. Exogenously provided urokinase-type PLG activator (uPA) converts surface-bound PLG into enzymatically active plasmin, as evaluated by the reaction with the chromogenic plasmin substrate d-Val-Leu-Lys 4-nitroanilide dihydrochloridein. The PLG activation system on the surface of Leptospira is PLG dose dependent and does not cause injury to the organism, as cellular growth in culture was not impaired. The generation of active plasmin within Leptospira was observed with several nonvirulent high-passage strains and with the nonpathogenic saprophytic organism Leptospira biflexa. Statistically significant higher activation of plasmin was detected with a low-passage infectious strain of Leptospira. Plasmin-coated virulent Leptospira interrogans bacteria were capable of degrading purified extracellular matrix fibronectin. The breakdown of fibronectin was not observed with untreated bacteria. Our data provide for the first time in vitro evidence for the generation of active plasmin on the surface of Leptospira, a step that may contribute to leptospiral invasiveness.
doi:10.1128/IAI.00353-09
PMCID: PMC2738053  PMID: 19581392
10.  Evaluation of Leptospiral Recombinant Antigens MPL17 and MPL21 for Serological Diagnosis of Leptospirosis by Enzyme-Linked Immunosorbent Assays ▿  
Clinical and Vaccine Immunology : CVI  2008;15(11):1715-1722.
Leptospirosis is a zoonosis of multisystem involvement caused by pathogenic strains of the genus Leptospira. In the last few years, intensive studies aimed at the development of a vaccine have provided important knowledge about the nature of the immunological mechanisms of the host. The purpose of this study was to analyze the immune responses to two recombinant proteins, MPL17 and MPL21 (encoded by the genes LIC10765 and LIC13131, respectively) of Leptospira interrogans serovar Copenhageni in individuals during infection. The recombinant proteins were expressed in Escherichia coli as six-His tag fusion proteins and were purified from the soluble bacterial fraction by affinity chromatography with Ni2+-charged resin. The recombinant proteins were used to evaluate their ability to bind to immunoglobulin G (IgG) (and IgG subclass) or IgM antibodies in serum samples from patients in the early and convalescent phases of leptospirosis (n = 52) by enzyme-linked immunosorbent assays. The prevalences of total IgG antibodies against MPL17 and MPL21 were 38.5% and 21.2%, respectively. The titers achieved with MPL17 were statistically significantly higher than those obtained by the reference microscopic agglutination test. The specificity of the assay was estimated to be 95.5% for MPL17 and 80.6% for MPL21 when serum samples from individuals with unrelated febrile diseases and control healthy donors were tested. The proteins are conserved among Leptospira strains that cause human and animal diseases. MPL17 and MPL21 are most likely new surface proteins of leptospires, as revealed by liquid-phase immunofluorescence assays with living organisms. Our results demonstrate that these recombinant proteins are highly immunogenic and, when they are used together, might be useful as a means of diagnosing leptospirosis.
doi:10.1128/CVI.00214-08
PMCID: PMC2583518  PMID: 18799647
11.  A Newly Identified Leptospiral Adhesin Mediates Attachment to Laminin▿  
Infection and Immunity  2006;74(11):6356-6364.
Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Several pathogens, including spirochetes, have been shown to express surface proteins that interact with the extracellular matrix (ECM). This adhesin-mediated binding process seems to be a crucial step in the colonization of host tissues. This study examined the interaction of putative leptospiral outer membrane proteins with laminin, collagen type I, collagen type IV, cellular fibronectin, and plasma fibronectin. Six predicted coding sequences selected from the Leptospira interrogans serovar Copenhageni genome were cloned, and proteins were expressed, purified by metal affinity chromatography, and characterized by circular dichroism spectroscopy. Their capacity to mediate attachment to ECM components was evaluated by binding assays. We have identified a leptospiral protein encoded by LIC12906, named Lsa24 (leptospiral surface adhesin; 24 kDa) that binds strongly to laminin. Attachment of Lsa24 to laminin was specific, dose dependent, and saturable. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. Triton X-114-solubilized extract of L. interrogans and phase partitioning showed that Lsa24 was exclusively in the detergent phase, indicating that it is a component of the leptospiral membrane. Moreover, Lsa24 partially inhibited leptospiral adherence to immobilized laminin. This newly identified membrane protein may play a role in mediating adhesion of L. interrogans to the host. To our knowledge, this is the first leptospiral adhesin with laminin-binding properties reported to date.
doi:10.1128/IAI.00460-06
PMCID: PMC1695492  PMID: 16954400
12.  Sm14 of Schistosoma mansoni in Fusion with Tetanus Toxin Fragment C Induces Immunoprotection against Tetanus and Schistosomiasis in Mice  
Infection and Immunity  2004;72(10):5931-5937.
We have constructed vectors that permit the expression in Escherichia coli of Schistosoma mansoni fatty acid-binding protein 14 (Sm14) in fusion with the nontoxic, but highly immunogenic, tetanus toxin fragment C (TTFC). The recombinant six-His-tagged proteins were purified by nickel affinity chromatography and used in immunization and challenge assays. Animals inoculated with TTFC in fusion with or coadministered with Sm14 showed high levels of tetanus toxin antibodies, while animals inoculated with Sm14 in fusion with or coadministered with TTFC showed high levels of Sm14 antibodies. In both cases, there were no changes in the type of immune response (Th2) obtained with the fusion proteins compared to those obtained with the nonfused proteins. Mice immunized with the recombinant proteins (TTFC in fusion with or coadministered with Sm14) survived the challenge with tetanus toxin and did not show any symptoms of the disease. Control animals inoculated with either phosphate-buffered saline (PBS) or Sm14 died with severe symptoms of tetanus after 24 h. Mice immunized with the recombinant proteins (Sm14 in fusion with or coadministered with TTFC) showed a 50% reduction in worm burden when they were challenged with S. mansoni cercariae, while control animals inoculated with either PBS or TTFC were not protected. The results show that the expression of other antigens in fusion at the carboxy terminus of TTFC is feasible for the development of a multivalent recombinant vaccine.
doi:10.1128/IAI.72.10.5931-5937.2004
PMCID: PMC517564  PMID: 15385496
13.  Induction of Neutralizing Antibodies against Diphtheria Toxin by Priming with Recombinant Mycobacterium bovis BCG Expressing CRM197, a Mutant Diphtheria Toxin 
Infection and Immunity  2001;69(2):869-874.
BCG, the attenuated strain of Mycobacterium bovis, has been widely used as a vaccine against tuberculosis and is thus an important candidate as a live carrier for multiple antigens. With the aim of developing a recombinant BCG (rBCG) vaccine against diphtheria, pertussis, and tetanus (DPT), we analyzed the potential of CRM197, a mutated nontoxic derivative of diphtheria toxin, as the recombinant antigen for a BCG-based vaccine against diphtheria. Expression of CRM197 in rBCG was achieved using Escherichia coli-mycobacterium shuttle vectors under the control of pBlaF*, an upregulated β-lactamase promoter from Mycobacterium fortuitum. Immunization of mice with rBCG-CRM197 elicited an anti-diphtheria toxoid antibody response, but the sera of immunized mice were not able to neutralize diphtheria toxin (DTx) activity. On the other hand, a subimmunizing dose of the conventional diphtheria-tetanus vaccine, administered in order to mimic an infection, showed that rBCG-CRM197 was able to prime the induction of a humoral response within shorter periods. Interestingly, the antibodies produced showed neutralizing activity only when the vaccines had been given as a mixture in combination with rBCG expressing tetanus toxin fragment C (FC), suggesting an adjuvant effect of rBCG-FC on the immune response induced by rBCG-CRM197. Isotype analysis of the anti-diphtheria toxoid antibodies induced by the combined vaccines, but not rBCG-CRM197 alone, showed an immunoglobulin G1-dominant profile, as did the conventional vaccine. Our results show that rBCG expressing CRM197 can elicit a neutralizing humoral response and encourage further studies on the development of a DPT vaccine with rBCG.
doi:10.1128/IAI.69.2.869-874.2001
PMCID: PMC97964  PMID: 11159980
14.  Proteome Analysis of Leptospira interrogans Virulent Strain 
Leptospirosis is a worldwide zoonotic infection of human and veterinary concern. Caused by pathogenic spirochetes of the genus Leptospira, the disease presents greater incidence in tropical and subtropical regions. The identification of proteins that could be involved in the bacteria host interactions may facilitate the search for immune protective antigens. We report the proteomic analysis of Leptospira interrogans serovar Pomona virulent strain LPF cultured from kidney and liver of infected hamsters. Total protein extracts were separated by two-dimensional gel electrophoresis (2-DE), 895 spots were analyzed by MALDI-TOF mass spectrometry (MS), and 286 were identified as leptospiral proteins, corresponding to 108 distinct proteins. These proteins are allocated in all the bacterial cell compartments and are distributed in every functional category. Furthermore, the previously described, known outer membrane proteins, OmpL1, LipL21, LipL31, LipL32/Hap-1, LipL41, LipL45, LipL46, LruA/LipL71, and OmpA-like protein Loa22 were all recognized. Most importantly, this research work identified 27 novel leptospiral proteins annotated as hypothetical open reading frames (ORFs). We report for the first time an array of proteins of the Leptospira expressed by virulent, low-passage strain. We believe that our studies, together with the genome data will enlighten our understanding of the disease.
doi:10.2174/1874285800903010069
PMCID: PMC2698427  PMID: 19590580
Leptospira interrogans; leptospirosis; proteomics.
15.  Adhesins of Leptospira interrogans Mediate the Interaction to Fibrinogen and Inhibit Fibrin Clot Formation In Vitro 
We report in this work that Leptospira strains, virulent L. interrogans serovar Copenhageni, attenuated L. interrogans serovar Copenhageni and saprophytic L. biflexa serovar Patoc are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits thrombin- induced fibrin clot formation that may affect the haemostatic equilibrium. Additionally, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of Leptospira causes degradation of human Fg. The data suggest that PLA-coated leptospires were capable to employ their proteolytic activity to decrease one substrate of the coagulation cascade. We also present six leptospiral adhesins and PLG- interacting proteins, rLIC12238, Lsa33, Lsa30, OmpL1, rLIC11360 and rLIC11975, as novel Fg-binding proteins. The recombinant proteins interact with Fg in a dose-dependent and saturable fashion when increasing protein concentration was set to react to a fix human Fg concentration. The calculated dissociation equilibrium constants (KD) of these reactions ranged from 733.3±276.8 to 128±89.9 nM for rLIC12238 and Lsa33, respectively. The interaction of recombinant proteins with human Fg resulted in inhibition of fibrin clot by thrombin-catalyzed reaction, suggesting that these versatile proteins could mediate Fg interaction in Leptospira. Our data reveal for the first time the inhibition of fibrin clot by Leptospira spp. and presents adhesins that could mediate these interactions. Decreasing fibrin clot would cause an imbalance of the coagulation cascade that may facilitate bleeding and help bacteria dissemination
Author Summary
Leptospirosis is probably the most widespread zoonosis in the world. Caused by spirochaetes of the genus Leptospira, it has greater incidence in tropical and subtropical regions. The disease has become prevalent in cities with sanitation problems and a large population of urban rodent reservoirs, which contaminate the environment through their urine. Understanding the mechanisms involved in pathogenesis of leptospirosis should contribute to new strategies that would help fight the disease. We show in this work that Leptospira strains, virulent, attenuated or saprophytic are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits the formation of fibrin clot that may result of an imbalance in the haemostatic equilibrium. In addition, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of leptospires can lead to Fg degradation, showing evidence of possible route of fibrinolysis in leptospirosis. We also present six leptospiral proteins, as novel Fg-binding proteins, capable of inhibiting fibrin clot formation by thrombin-catalyzed reaction, suggesting that in Leptospira these multifunctional proteins could mediate Fg interaction. Our data suggest possible mechanisms that leptospires could employ to affect the coagulation cascade and fibrinolytic system that might lead to bacteria spreading.
doi:10.1371/journal.pntd.0002396
PMCID: PMC3757074  PMID: 24009788

Results 1-15 (15)