Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Identification of immunodominant antigens in canine leptospirosis by Multi-Antigen Print ImmunoAssay (MAPIA) 
BMC Veterinary Research  2014;10(1):288.
The microscopic agglutination test (MAT), the standard method for serological diagnosis of leptospirosis, may present limitations regarding its sensitivity. Current studies suggest that Leptospira immunoglobulin-like (Lig) proteins and LipL32 are of particular interest as serodiagnostic markers since they are present only in pathogenic species of the Leptospira genus. The purpose of this study was to identify leptospiral immunodominant proteins that are recognized by canine sera from diseased dogs.
A total of 109 dogs were studied, including seroreactive dogs (MAT ≥800) and dogs with no seroreactivity detectable by MAT. Eight recombinant fragments (31–70 kDa) of pathogenic Leptospira were tested for their use as diagnostic markers for canine leptospirosis using the Multi-antigen Print Immunoassay (MAPIA) platform: LigB [582-947aa] from L. interrogans serovar Pomona, L. interrogans serovar Copenhageni and L. kirschneri serovar Gryppotyphosa, LigB [131-649aa] from L. interrogans serovar Copenhageni, L. interrogans serovar Canicola and L. kirschneri serovar Gryppotyphosa, LigA [625-1224aa] L. interrogans serovar Copenhageni and LipL32 from L. interrogans serovar Copenhageni. The data were analyzed and ROC curves were generated. Altogether, LigB [131-649aa] L. interrogans Canicola, LigB [131-649aa] L. kirschneri Gryppotyphosa and LipL32 L. interrogans Copenhageni showed best accuracy (AUC = 0.826 to 0.869), with 70% specificity and sensitivity ranging from 89% to 95%.
These results reinforce their potential as diagnostic candidates for the development of new methods for the serological diagnosis of canine leptospirosis.
PMCID: PMC4269070  PMID: 25466383
Leptospirosis; Dogs; MAPIA; LipL32; Lig proteins
2.  Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor 
BMC Research Notes  2014;7(1):671.
Leptospirosis is a zoonose that is increasingly endemic in built-up areas, especially where there are communities living in precarious housing with poor or non-existent sanitation infrastructure. Leptospirosis can kill, for its symptoms are easily confused with those of other diseases. As such, a rapid diagnosis is required so it can be treated effectively. A test for leptospirosis diagnosis using Leptospira Immunoglobulin-like (Lig) proteins is currently at final validation at Fiocruz.
In this work, the process for expression of LigB (131-645aa) in E. coli BL21 (DE3)Star™/pAE was evaluated. No significant difference was found for the experiments at two different pre-induction temperatures (28°C and 37°C). Then, the strain was cultivated at 37°C until IPTG addition, followed by induction at 28°C, thereby reducing the overall process time. Under this condition, expression was assessed using central composite design for two variables: cell growth at which LigB (131-645aa) was induced (absorbance at 600 nm between 0.75 and 2.0) and inducer concentration (0.1 mM to 1 mM IPTG). Both variables influenced cell growth and protein expression. Induction at the final exponential growth phase in shaking flasks with Absind  = 2.0 yielded higher cell concentrations and LigB (131-645aa) productivities. IPTG concentration had a negative effect and could be ten-fold lower than the concentration commonly used in molecular biology (1 mM), while keeping expression at similar levels and inducing less damage to cell growth. The expression of LigB (131-645aa) was associated with cell growth. The induction at the end of the exponential phase using 0.1 mM IPTG at 28°C for 4 h was also performed in microbioreactors, reaching higher cell densities and 970 mg/L protein. LigB (131-645aa) was purified by nickel affinity chromatography with 91% homogeneity.
It was possible to assess the effects and interactions of the induction variables on the expression of soluble LigB (131-645aa) using experimental design, with a view to improving process productivity and reducing the production costs of a rapid test for leptospirosis diagnosis.
PMCID: PMC4190419  PMID: 25252618
Leptospira; Leptospirosis; Diagnosis; Statistical experimental design; Microbioreactor
3.  Experimental design approach in recombinant protein expression: determining medium composition and induction conditions for expression of pneumolysin from Streptococcus pneumoniae in Escherichia coli and preliminary purification process 
BMC Biotechnology  2014;14:1.
Streptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis. The World Health Organization estimates that streptococcal pneumonia is the cause of approximately 1.9 million deaths of children under five years of age each year. The large number of serotypes underlying the disease spectrum, which would be reflected in the high production cost of a commercial vaccine effective to protect against all of them and the higher level of amino acid sequence conservation as compared to polysaccharide structure, has prompted us to attempt to use conserved proteins for the development of a simpler vaccine. One of the most prominent proteins is pneumolysin (Ply), present in almost all the serotypes known at the moment, which shows an effective protection against S. pneumoniae infections.
We have cloned the pneumolysin gene from S. pneumoniae serotype 14 and studied the effects of eight variables related to medium composition and induction conditions on the soluble expression of rPly in Escherichia coli (E. coli) and a 28-4 factorial design was applied. Statistical analysis was carried out to compare the conditions used to evaluate the expression of soluble pneumolysin; rPly activity was evaluated by hemolytic activity assay and served as the main response to evaluate the proper protein expression and folding. The optimized conditions, validated by the use of triplicates, include growth until an absorbance of 0.8 (measured at 600 nm) with 0.1 mM IPTG during 4 h at 25°C in a 5 g/L yeast extract, 5 g/L tryptone, 10 g/L NaCl, 1 g/L glucose medium, with addition of 30 μg/mL kanamycin.
This experimental design methodology allowed the development of an adequate process condition to attain high levels (250 mg/L) of soluble expression of functional rPly in E. coli, which should contribute to reduce operational costs. It was possible to recover the protein in its active form with 75% homogeneity.
PMCID: PMC3897902  PMID: 24400649
Soluble expression; Experimental design; Design of experiment (DoE); rPly; Recombinant E. coli; Hemolytic activity
4.  Identification of Seroreactive Proteins of Leptospira interrogans Serovar Copenhageni Using a High-Density Protein Microarray Approach 
Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease.
In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results.
Principal findings
We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients.
Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms.
Author Summary
Leptospirosis is an infectious zoonotic disease that causes non-specific signs and symptoms in humans, which hampers the clinical diagnosis and treatment by physicians. Complications can occur if the proper treatment is not initiated early in the course of illness. Although the early diagnosis is critical for preventing unnecessary complications, currently available tests do not exhibit sufficient diagnostic sensitivity in the beginning of disease. We took advantage of high throughput techniques to perform an embracing study of the humoral immune response to the bacteria in order to identify antigens that could be used in a new test for the diagnosis of leptospirosis. A protein microarray chip containing 2,241 leptospiral proteins was constructed and probed with serum samples from patients and healthy individuals. We identified 24 proteins that are recognized by patients' sera but not by healthy individuals. These proteins are potential diagnostic markers, especially the ones identified for acute-phase patients, which can discriminate between a positive and a negative leptospirosis case within a few days after onset of symptoms. This work establishes the protein microarray approach for improving our understanding of the serological response to leptospirosis. Further research is needed to assess the performance of these antigens in the clinical setting.
PMCID: PMC3798601  PMID: 24147173
5.  Accuracy of a Dual Path Platform (DPP) Assay for the Rapid Point-of-Care Diagnosis of Human Leptospirosis 
Diagnosis of leptospirosis by the gold standard serologic assay, the microscopic agglutination test (MAT), requires paired sera and is not widely available. We developed a rapid assay using immunodominant Leptospira immunoglobulin-like (Lig) proteins in a Dual Path Platform (DPP). This study aimed to evaluate the assay's diagnostic performance in the setting of urban transmission.
We determined test sensitivity using 446 acute and convalescent sera from MAT-confirmed case-patients with severe or mild leptospirosis in Brazil. We assessed test specificity using 677 sera from the following groups: healthy residents of a Brazilian slum with endemic transmission, febrile outpatients from the same slum, healthy blood donors, and patients with dengue, hepatitis A, and syphilis. Three operators independently interpreted visual results without knowing specimen status.
The overall sensitivity for paired sera was 100% and 73% for severe and mild disease, respectively. In the acute phase, the assay achieved a sensitivity of 85% and 64% for severe and mild leptospirosis, respectively. Within seven days of illness onset, the assay achieved a sensitivity of 77% for severe disease and 60% for mild leptospirosis. Sensitivity of the DPP assay was similar to that for IgM-ELISA and increased with both duration of symptoms (chi-square regression P = 0.002) and agglutinating titer (Spearman ρ = 0.24, P<0.001). Specificity was ≥93% for dengue, hepatitis A, syphilis, febrile outpatients, and blood donors, while it was 86% for healthy slum residents. Inter-operator agreement ranged from very good to excellent (kappa: 0.82–0.94) and test-to-test reproducibility was also high (kappa: 0.89).
The DPP assay performed acceptably well for diagnosis of severe acute clinical leptospirosis and can be easily implemented in hospitals and health posts where leptospirosis is a major public health problem. However, test accuracy may need improvement for mild disease and early stage leptospirosis, particularly in regions with high transmission.
Author Summary
Leptospirosis is an important cause of acute fever in the tropics and the mortality rate may exceed 15% in patients with severe disease manifestations. The gold standard serological test for diagnosing leptospirosis, the microagglutination test or MAT, requires significant laboratory resources and results are not timely. Improved diagnostics are therefore critically needed to identify patients and outbreaks earlier and to thereby prevent unnecessary deaths. The need for a rapid diagnostic test is particularly acute in resource-poor settings where leptospirosis is a major public health problem and sophisticated laboratories are unavailable. In this study, we measured the diagnostic accuracy of the novel Dual Path Platform (DPP) for leptospirosis using serum from patients with mild and severe disease. The DPP assay detected up to 85% of severe leptospirosis and 64% of mild leptospirosis patients using the initial clinical specimen collected at hospital presentation and its diagnostic performance was comparable to a commonly used IgM-ELISA. Furthermore, the DPP assay produces a result in 20 minutes and can be more easily implemented in field settings than existing diagnostic technologies. The commercially available DPP kit offers the simple, accurate, and quick diagnosis of leptospirosis and, consequently, more timely clinical and public health decision-making.
PMCID: PMC3486890  PMID: 23133686
6.  Subunit Approach to Evaluation of the Immune Protective Potential of Leptospiral Antigens ▿ 
Clinical and Vaccine Immunology : CVI  2011;18(12):2026-2030.
Leptospirosis is the most widespread zoonosis in the world. Current vaccines are based on whole-cell preparations that cause severe side effects and do not induce satisfactory immunity. In light of the leptospiral genome sequences recently made available, several studies aimed at identification of protective recombinant immunogens have been performed; however, few such immunogens have been identified. The aim of this study was to evaluate 27 recombinant antigens to determine their potential to induce an immune response protective against leptospirosis in the hamster model. Experiments were conducted with groups of female hamsters immunized with individual antigen preparations. Hamsters were then challenged with a lethal dose of Leptospira interrogans. Thirteen antigens induced protective immune responses; however, only recombinant proteins LIC10325 and LIC13059 induced significant protection against mortality. These results have important implications for the development of an efficacious recombinant subunit vaccine against leptospirosis.
PMCID: PMC3232701  PMID: 22030369
7.  An imprint method for detecting leptospires in the hamster model of vaccine-mediated immunity for leptospirosis 
Journal of Medical Microbiology  2009;58(Pt 12):1632-1637.
In determining the efficacy of new vaccine candidates for leptospirosis, the primary end point is death and an important secondary end point is sterilizing immunity. However, evaluation of this end point is often hampered by the time-consuming demands and complexity of methods such as culture isolation (CI). In this study, we evaluated the use of an imprint (or touch preparation) method (IM) in detecting the presence of leptospires in tissues of hamsters infected with Leptospira interrogans serovar Copenhageni. In a dissemination study, compared to CI, the IM led to equal or improved detection of leptospires in kidney, liver, lung and blood samples collected post-infection and overall concordance was good (κ=0.61). Furthermore, in an evaluation of hamsters immunized with a recombinant leptospiral protein-based vaccine candidate and subsequently challenged, the agreement between the CI and IM was very good (κ=0.84). These findings indicate that the IM is a rapid method for the direct observation of Leptospira spp. that can be readily applied to evaluating infection in experimental animals and determining sterilizing immunity when screening potential vaccine candidates.
PMCID: PMC2887544  PMID: 19679685
8.  The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis 
Vaccine  2007;25(33):6277-6286.
Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries and a veterinary disease in livestock and companion animals worldwide. Leptospiral immunoglobulin-like (Lig) proteins are a family of surface-exposed determinants that have Ig-like repeat domains found in virulence factors such as intimin and invasin. We expressed fragments of the repeat domain regions of LigA and LigB from Leptospira interrogans serovar Copenhageni. Immunization of Golden Syrian hamsters with Lig fragments in Freund’s adjuvant induced robust antibody responses against recombinant protein and native protein, as detected by ELISA and immunoblot, respectively. A single fragment, LigANI, which corresponds to the six carboxy-terminal Ig-like repeat domains of the LigA molecule, conferred immunoprotection against mortality (67-100%, P <0.05) in hamsters which received a lethal inoculum of L. interrogans serovar Copenhageni. However, immunization with this fragment did not confer sterilizing immunity. These findings indicate that the carboxy-terminal portion of LigA is an immunoprotective domain and may serve as a vaccine candidate for human and veterinary leptospirosis.
PMCID: PMC1994161  PMID: 17629368
Leptospirosis; subunit vaccine; Leptospiral immunoglobulin-like protein; recombinant protein; immunity; antibodies; hamsters

Results 1-8 (8)