Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
author:("koirala, tuia")
1.  Mycobacterium tuberculosis Beijing Genotype Is Associated with HIV Infection in Mozambique 
PLoS ONE  2013;8(8):e71999.
The Beijing genotype is a lineage of Mycobacterium tuberculosis that is distributed worldwide and responsible for large epidemics, associated with multidrug-resistance. However, its distribution in Africa is less understood due to the lack of data. Our aim was to investigate the prevalence and possible transmission of Beijing strains in Mozambique by a multivariate analysis of genotypic, geographic and demographic data. A total of 543 M. tuberculosis isolates from Mozambique were spoligotyped. Of these, 33 were of the Beijing lineage. The genetic relationship between the Beijing isolates were studied by identification of genomic deletions within some Regions of Difference (RD), Restriction Fragment Length Polymorphism (RFLP) and Mycobacterial Interspersed Repetivie Unit – variable number tandem repeat (MIRU-VNTR). Beijing strains from South Africa, representing different sublineages were included as reference strains. The association between Beijing genotype, Human Immunodeficiency Virus (HIV) serology and baseline demographic data was investigated. HIV positive serostatus was significantly (p=0.023) more common in patients with Beijing strains than in patients with non-Beijing strains in a multivariable analysis adjusted for age, sex and province (14 (10.9%) of the 129 HIV positive patients had Beijing strains while 6/141 (4.3%) of HIV negative patients had Beijing strains). The majority of Beijing strains were found in the Southern region of Mozambique, particularly in Maputo City (17%). Only one Beijing strain was drug resistant (multi-drug resistant). By combined use of RD and spoligotyping, three genetic sublineages could be tentatively identified where a distinct group of four isolates had deletion of RD150, a signature of the “sublineage 7” recently emerging in South Africa. The same group was very similar to South African “sublineage 7” by RFLP and MIRU-VNTR, suggesting that this sublineage could have been recently introduced in Mozambique from South Africa, in association with HIV infection.
PMCID: PMC3737140  PMID: 23940801
3.  Mycobacterium tuberculosis Strains Potentially Involved in the TB Epidemic in Sweden a Century Ago 
PLoS ONE  2012;7(10):e46848.
A hundred years ago the prevalence of tuberculosis (TB) in Sweden was one of the highest in the world. In this study we conducted a population-based search for distinct strains of Mycobacterium tuberculosis complex isolated from patients born in Sweden before 1945. Many of these isolates represent the M. tuberculosis complex population that fueled the TB epidemic in Sweden during the first half of the 20th century.
Genetic relationships between strains that caused the epidemic and present day strains were studied by spoligotyping and restriction fragment length polymorphism.
The majority of the isolates from the elderly population were evolutionary recent Principal Genetic Group (PGG)2/3 strains (363/409 or 88.8%), and only a low proportion were ancient PGG1 strains (24/409 or 5.9%). Twenty-two were undefined. The isolates demonstrated a population where the Euro-American superlineage dominated; in particular with Haarlem (41.1%) and T (37.7%) spoligotypes and only 21.2% belonged to other spoligotype families. Isolates from the elderly population clustered much less frequently than did isolates from a young control group population.
A closely knit pool of PGG2/3 strains restricted to Sweden and its immediate neighbours appears to have played a role in the epidemic, while PGG1 strains are usually linked to migrants in todaýs Sweden. Further studies of these outbreak strains may give indications of why the epidemic waned.
PMCID: PMC3466202  PMID: 23056484
4.  The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited 
PLoS ONE  2011;6(4):e18601.
The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048).
PMCID: PMC3080393  PMID: 21533101
5.  Genomic Stability over 9 Years of an Isoniazid Resistant Mycobacterium tuberculosis Outbreak Strain in Sweden 
PLoS ONE  2011;6(1):e16647.
In molecular epidemiological studies of drug resistant Mycobacterium tuberculosis (TB) in Sweden a large outbreak of an isoniazid resistant strain was identified, involving 115 patients, mainly from the Horn of Africa. During the outbreak period, the genomic pattern of the outbreak strain has stayed virtually unchanged with regard to drug resistance, IS6110 restriction fragment length polymorphism and spoligotyping patterns. Here we present the complete genome sequence analyses of the index isolate and two isolates sampled nine years after the index case as well as experimental data on the virulence of this outbreak strain. Even though the strain has been present in the community for nine years and passaged between patients at least five times in-between the isolates, we only found four single nucleotide polymorphisms in one of the later isolates and a small (4 amino acids) deletion in the other compared to the index isolate. In contrast to many other evolutionarily successful outbreak lineages (e.g. the Beijing lineage) this outbreak strain appears to be genetically very stable yet evolutionarily successful in a low endemic country such as Sweden. These findings further illustrate that the rate of genomic variation in TB can be highly strain dependent, something that can have important implications for epidemiological studies as well as development of resistance.
PMCID: PMC3031603  PMID: 21304944
6.  Molecular diversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mozambique 
BMC Microbiology  2010;10:195.
Mozambique is one of the countries with the highest burden of tuberculosis (TB) in Sub-Saharan Africa, and information on the predominant genotypes of Mycobacterium tuberculosis circulating in the country are important to better understand the epidemic. This study determined the predominant strain lineages that cause TB in Mozambique.
A total of 445 M. tuberculosis isolates from seven different provinces of Mozambique were characterized by spoligotyping and resulting profiles were compared with the international spoligotyping database SITVIT2.
The four most predominant lineages observed were: the Latin-American Mediterranean (LAM, n = 165 or 37%); the East African-Indian (EAI, n = 132 or 29.7%); an evolutionary recent but yet ill-defined T clade, (n = 52 or 11.6%); and the globally-emerging Beijing clone, (n = 31 or 7%). A high spoligotype diversity was found for the EAI, LAM and T lineages.
The TB epidemic in Mozambique is caused by a wide diversity of spoligotypes with predominance of LAM, EAI, T and Beijing lineages.
PMCID: PMC2914001  PMID: 20663126
7.  Drug Resistant Mycobacterium tuberculosis of the Beijing Genotype Does Not Spread in Sweden 
PLoS ONE  2010;5(5):e10893.
Drug resistant (DR) and multi-drug resistant (MDR) tuberculosis (TB) is increasing worldwide. In some parts of the world 10% or more of new TB cases are MDR. The Beijing genotype is a distinct genetic lineage of Mycobacterium tuberculosis, which is distributed worldwide, and has caused large outbreaks of MDR-TB. It has been proposed that certain lineages of M. tuberculosis, such as the Beijing lineage, may have specific adaptive advantages. We have investigated the presence and transmission of DR Beijing strains in the Swedish population.
Methodology/Principal Findings
All DR M. tuberculosis complex isolates between 1994 and 2008 were studied. Isolates that were of Beijing genotype were investigated for specific resistance mutations and phylogenetic markers. Seventy (13%) of 536 DR strains were of Beijing genotype. The majority of the patients with Beijing strains were foreign born, and their country of origin reflects the countries where the Beijing genotype is most prevalent. Multidrug-resistance was significantly more common in Beijing strains than in non-Beijing strains. There was a correlation between the Beijing genotype and specific resistance mutations in the katG gene, the mabA-inhA-promotor and the rpoB gene. By a combined use of RD deletions, spoligotyping, IS1547, mutT gene polymorphism and Rv3135 gene analysis the Beijing strains could be divided into 11 genomic sublineages. Of the patients with Beijing strains 28 (41%) were found in altogether 10 clusters (2–5 per cluster), as defined by RFLP IS6110, while 52% of the patients with non-Beijing strains were in clusters. By 24 loci MIRU-VNTR 31 (45%) of the patients with Beijing strains were found in altogether 7 clusters (2–11 per cluster). Contact tracing established possible epidemiological linkage between only two patients with Beijing strains.
Although extensive outbreaks with non-Beijing TB strains have occurred in Sweden, Beijing strains have not taken hold, in spite of the proximity to high prevalence countries such as Russia and the Baltic countries. The Beijing sublineages so far introduced in Sweden may not be adapted to spread in the Scandinavian population.
PMCID: PMC2878347  PMID: 20531942
8.  European Perspective of 2-Person Rule for Biosafety Level 4 Laboratories 
PMCID: PMC2857259  PMID: 19891889
Laboratories; safety management; safety; security measures; bioterrorism; biological toxins; letter
9.  DNA restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from HIV-seropositive and HIV-seronegative patients in Kampala, Uganda 
The identification and differentiation of strains of Mycobacterium tuberculosis by DNA fingerprinting has provided a better understanding of the epidemiology and tracing the transmission of tuberculosis. We set out to determine if there was a relationship between the risk of belonging to a group of tuberculosis patients with identical mycobacterial DNA fingerprint patterns and the HIV sero-status of the individuals in a high TB incidence peri-urban setting of Kampala, Uganda.
One hundred eighty three isolates of Mycobacterium tuberculosis from 80 HIV seropositive and 103 HIV seronegative patients were fingerprinted by standard IS6110-RFLP. Using the BioNumerics software, strains were considered to be clustered if at least one other patient had an isolate with identical RFLP pattern.
One hundred and eighteen different fingerprint patterns were obtained from the 183 isolates. There were 34 clusters containing 54% (99/183) of the patients (average cluster size of 2.9), and a majority (96.2%) of the strains possessed a high copy number (≥ 5 copies) of the IS6110 element. When strains with <5 bands were excluded from the analysis, 50.3% (92/183) were clustered, and there was no difference in the level of diversity of DNA fingerprints observed in the two sero-groups (adjusted odds ratio [aOR] 0.85, 95%CI 0.46–1.56, P = 0.615), patients aged <40 years (aOR 0.53, 95%CI 0.25–1.12, P = 0.100), and sex (aOR 1.12, 95%CI 0.60–2.06, P = 0.715).
The sample showed evidence of a high prevalence of recent transmission with a high average cluster size, but infection with an isolate with a fingerprint found to be part of a cluster was not associated with any demographic or clinical characteristics, including HIV status.
PMCID: PMC2645406  PMID: 19196450
10.  Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in peri-urban Kampala, Uganda 
The poor peri-urban areas of developing countries with inadequate living conditions and a high prevalence of HIV infection have been implicated in the increase of tuberculosis (TB). Presence of different lineages of Mycobacterium tuberculosis has been described in different parts of the world. This study determined the predominant strain lineages that cause TB in Rubaga division, Kampala, Uganda, and the prevalence of resistance to key anti-tuberculosis drugs in this community.
This was a cross-sectional study of newly diagnosed sputum smear-positive patients aged ≥ 18 years. A total of 344 isolates were genotyped by standard spoligotyping and the strains were compared with those in the international spoligotype database (SpolDB4). HIV testing and anti-tuberculosis drug susceptibility assays for isoniazid and rifampicin were performed and association with the most predominant spoligotypes determined.
A total of 33 clusters were obtained from 57 spoligotype patterns. According to the SpolDB4 database, 241 (70%) of the isolates were of the T2 family, while CAS1-Kili (3.5%), LAM9 (2.6%), CAS1-Delhi (2.6%) were the other significant spoligotypes. Furthermore, a major spoligotype pattern of 17 (4.5%) strains characterized by lack of spacers 15–17 and 19–43 was not identified in SpolDB4. A total of 92 (26.7%) of the patients were HIV sero-positive, 176 (51.2%) sero-negative, while 76 (22.1%) of the patients did not consent to HIV testing. Resistance to isoniazid was found in 8.1% of strains, while all 15 (4.4%) strains resistant to rifampicin were multi-drug resistant. Additionally, there was no association between any strain types in the sample with either drug resistance or HIV sero-status of the patients.
The TB epidemic in Kampala is localized, mainly caused by the T2 family of strains. Strain types were neither associated with drug resistance nor HIV sero-status.
PMCID: PMC2519071  PMID: 18662405
11.  Global Distribution of Mycobacterium tuberculosis Spoligotypes 
Emerging Infectious Diseases  2002;8(11):1347-1349.
We present a short summary of recent observations on the global distribution of the major clades of the Mycobacterium tuberculosis complex, the causative agent of tuberculosis. This global distribution was defined by data-mining of an international spoligotyping database, SpolDB3. This database contains 11,708 patterns from as many clinical isolates originating from more than 90 countries. The 11,708 spoligotypes were clustered into 813 shared types. A total of 1,300 orphan patterns (clinical isolates showing a unique spoligotype) were also detected.
PMCID: PMC2738532  PMID: 12453368
Mycobacterium tuberculosis; spoligotyping
12.  Spread of Drug-Resistant Pulmonary Tuberculosis in Estonia 
Journal of Clinical Microbiology  2001;39(9):3339-3345.
Restriction fragment length polymorphism (RFLP) analysis of 209 Mycobacterium tuberculosis clinical isolates obtained from newly detected pulmonary tuberculosis patients (151 male and 58 female; mean age, 41 years) in Estonia during 1994 showed that 61 isolates (29%) belonged to a genetically closely related group of isolates, family A, with a predominant IS6110 banding pattern. These strains shared the majority of their IS6110 DNA-containing restriction fragments, representing a predominant banding pattern (similarity, >65%). This family A comprised 12 clusters of identical isolates, and the largest cluster comprised 10 strains. The majority (87.5%) of all multidrug-resistant (MDR) isolates, 67.2% of all isolates with any drug resistance, but only 12% of the fully susceptible isolates of M. tuberculosis belonged to family A. These strains were confirmed by spoligotyping as members of the Beijing genotype family. The spread of Beijing genotype MDR M. tuberculosis strains was also frequently seen in 1997 to 1999. The members of this homogenous group of drug-resistant M. tuberculosis strains have contributed substantially to the continual emergence of drug-resistant tuberculosis all over Estonia.
PMCID: PMC88341  PMID: 11526173
13.  Evolution and Clonal Traits of Mycobacterium tuberculosis Complex in Guinea-Bissau 
Journal of Clinical Microbiology  1999;37(12):3872-3878.
Two hundred twenty-nine consecutive isolates of Mycobacterium tuberculosis complex from patients with pulmonary tuberculosis in Guinea-Bissau, which is located in West Africa, were analyzed for clonal origin by biochemical typing and DNA fingerprinting. By using four biochemical tests (resistance to thiophene-2-carboxylic acid hydrazide, niacin production, nitrate reductase test, and pyrazinamidase test), the isolates could be assigned to five different biovars. The characteristics of four strains conformed fully with the biochemical criteria for M. bovis, while those of 85 isolates agreed with the biochemical criteria for M. tuberculosis. The remaining 140 isolates could be allocated into one of three biovars (biovars 2 to 4) representing a spectrum between the classical bovine (biovar 1) and human (biovar 5) tubercle bacilli. By using two genotyping methods, restriction fragment length polymorphism analysis with IS6110 (IS6110 RFLP analysis) and spoligotyping, the isolates could be separated into three groups (groups A to C) of the M. tuberculosis complex. Group A (n = 95), which contained the majority of classical human M. tuberculosis isolates, had large numbers of copies of IS6110 elements (mean number of copies, 9) and a distinctive spoligotyping pattern that lacked spacers 33 to 36. Isolates of the major group, group B (n = 119), had fewer IS6110 copies (mean copy number, 5) and a spoligotyping pattern that lacked spacers 7 to 9 and 39 and mainly comprised isolates of biovars 1 to 4. Group C isolates (n = 15) had one to three IS6110 copies, had a spoligotyping pattern that lacked spacers 29 to 34, and represented biovar 3 to 5 isolates. Four isolates whose biochemical characteristics conformed with those of M. bovis clustered with the group B isolates and had spoligotype patterns that differed from those previously reported for M. bovis, in that they possessed spacers 40 to 43. Interestingly, isolates of group B and, to a certain extent, also isolates of group C showed a high degree of variability in biochemical traits, despite genotypic identity in terms of IS6110 RFLP and spoligotype patterns. We hypothesize that isolates of groups B and C have their evolutionary origin in West Africa, while group A isolates are of European descent.
PMCID: PMC85833  PMID: 10565899

Results 1-13 (13)