Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Theileria equi isolates vary in susceptibility to imidocarb dipropionate but demonstrate uniform in vitro susceptibility to a bumped kinase inhibitor 
Parasites & Vectors  2015;8:33.
The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variation in clinical response to therapy has been observed.
We quantified the in vitro susceptibility of two T. equi isolates and a lab generated variant to both imidocarb dipropionate and a bumped kinase inhibitor compound 1294. We also evaluated the capacity of in vitro imidocarb dipropionate exposure to decrease susceptibility to that drug. The efficacy of imidocarb dipropionate for clearing infection in four T. equi infected ponies was also assessed.
We observed an almost four-fold difference in imidocarb dipropionate susceptibility between two distinct isolates of T. equi. Four ponies infected with the less susceptible USDA Florida strain failed to clear the parasite despite two rounds of treatment. Importantly, a further 15-fold decrease in susceptibility was produced in this strain by continuous in vitro imidocarb dipropionate exposure. Despite a demonstrated difference in imidocarb dipropionate susceptibility, there was no difference in the susceptibility of two T. equi isolates to bumped kinase inhibitor 1294.
The observed variation in imidocarb dipropionate susceptibility, further reduction in susceptibility caused by drug exposure in vitro, and failure to clear T. equi infection in vivo, raises concern for the emergence of drug resistance in clinical cases undergoing treatment. Bumped kinase inhibitors may be effective as alternative drugs for the treatment of resistant T. equi parasites.
PMCID: PMC4311422  PMID: 25600252
Theileria equi; Equine piroplasmosis; Imidocarb dipropionate; Apicomplexan; Bumped kinase inhibitor; Drug susceptibility
2.  Serum Antibodies from a Subset of Horses Positive for Babesia caballi by Competitive Enzyme-Linked Immunosorbent Assay Demonstrate a Protein Recognition Pattern That Is Not Consistent with Infection 
Clinical and Vaccine Immunology : CVI  2013;20(11):1752-1757.
Tick-borne pathogens that cause persistent infection are of major concern to the livestock industry because of transmission risk from persistently infected animals and the potential economic losses they pose. The recent reemergence of Theileria equi in the United States prompted a widespread national survey resulting in identification of limited distribution of equine piroplasmosis (EP) in the U.S. horse population. This program identified Babesia caballi-seropositive horses using rhoptry-associated protein 1 (RAP-1)–competitive enzyme-linked immunosorbent assay (cELISA), despite B. caballi being considered nonendemic on the U.S. mainland. The purpose of the present study was to evaluate the suitability of RAP-1–cELISA as a single serological test to determine the infection status of B. caballi in U.S. horses. Immunoblotting indicated that sera from U.S. horses reacted with B. caballi lysate and purified B. caballi RAP-1 protein. Antibody reactivity to B. caballi lysate was exclusively directed against a single ∼50-kDa band corresponding to a native B. caballi RAP-1 protein. In contrast, sera from experimentally and naturally infected horses from regions where B. caballi is endemic bound multiple proteins ranging from 30 to 50 kDa. Dilutions of sera from U.S. horses positive by cELISA revealed low levels of antibodies, while sera from horses experimentally infected with B. caballi and from areas where B. caballi is endemic had comparatively high antibody levels. Finally, blood transfer from seropositive U.S. horses into naive horses demonstrated no evidence of B. caballi transmission, confirming that antibody reactivity in cELISA-positive U.S. horses was not consistent with infection. Therefore, we conclude that a combination of cELISA and immunoblotting is required for the accurate serodiagnosis of B. caballi.
PMCID: PMC3837787  PMID: 24049108
3.  Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions 
Parasites & Vectors  2013;6:35.
Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This parasite has a worldwide distribution but the United States was considered to be free of this disease until recently.
We used samples from 37 horses to determine genetic relationships among North American T. equi using the 18S rRNA gene and microsatellites. We developed a DNA fingerprinting panel of 18 microsatellite markers using the first complete genome sequence of T. equi.
A maximum parsimony analysis of 18S rRNA sequences grouped the samples into two major clades. The first clade (n = 36) revealed a high degree of nucleotide similarity in U.S. T. equi, with just 0–2 single nucleotide polymorphisms (SNPs) among samples. The remaining sample fell into a second clade that was genetically divergent (48 SNPs) from the other U.S. samples. This sample was collected at the Texas border, but may have originated in Mexico. We genotyped T. equi from the U.S. using microsatellite markers and found a moderate amount of genetic diversity (2–8 alleles per locus). The field samples were mostly from a 2009 Texas outbreak (n = 22) although samples from five other states were also included in this study. Using Weir and Cockerham’s FST estimator (θ) we found strong population differentiation of the Texas and Georgia subpopulations (θ = 0.414), which was supported by a neighbor-joining tree created with predominant single haplotypes. Single-clone infections were found in 27 of the 37 samples (73%), allowing us to identify 15 unique genotypes.
The placement of most T. equi into one monophyletic clade by 18S is suggestive of a limited source of introduction into the U.S. When applied to a broader cross section of worldwide samples, these molecular tools should improve source tracking of T. equi outbreaks and may help prevent the spread of this tick-borne parasite.
PMCID: PMC3606381  PMID: 23399005
Babesia equi; Theileria equi; Equine piroplasmosis; 18S rRNA gene; Microsatellite; Population genetics
4.  Comparative genomic analysis and phylogenetic position of Theileria equi 
BMC Genomics  2012;13:603.
Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites.
The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp.
The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.
PMCID: PMC3505731  PMID: 23137308
Apicomplexa; Parasite; Vaccine; Horse; Vector-borne disease
5.  Re-Emergence of the Apicomplexan Theileria equi in the United States: Elimination of Persistent Infection and Transmission Risk 
PLoS ONE  2012;7(9):e44713.
Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 104.9 organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions.
PMCID: PMC3435266  PMID: 22970295
6.  Protective Effects of Passively Transferred Merozoite-Specific Antibodies against Theileria equi in Horses with Severe Combined Immunodeficiency 
Theileria equi immune plasma was infused into young horses (foals) with severe combined immunodeficiency. Although all foals became infected following intravenous challenge with homologous T. equi merozoite stabilate, delayed time to peak parasitemia occurred. Protective effects were associated with a predominance of passively transferred merozoite-specific IgG3.
PMCID: PMC3255952  PMID: 22038847
7.  Bm86 midgut protein sequence variation in South Texas cattle fever ticks 
Parasites & Vectors  2010;3:101.
Cattle fever ticks, Rhipicephalus (Boophilus) microplus and R. (B.) annulatus, vector bovine and equine babesiosis, and have significantly expanded beyond the permanent quarantine zone established in South Texas. Currently, there are no vaccines approved for use within the United States for controlling these vectors. Vaccines developed in Australia and Cuba based on the midgut antigen Bm86 have variable efficacy against cattle fever ticks. A possible explanation for this variation in vaccine efficacy is amino acid sequence divergence between the recombinant Bm86 vaccine component and native Bm86 expressed in ticks from different geographical regions of the world.
There was 91.8% amino acid sequence identity in Bm86 among R. microplus and R. annulatus sequenced from South Texas infestations. When South Texas isolates were compared to the Australian Yeerongpilly and Cuban Camcord vaccine strains, there was 89.8% and 90.0% identity, respectively. Most of the sequence divergence was focused in one region of the protein, amino acids 206-298. Hydrophilicity profiles revealed that two short regions of Bm86 (amino acids 206-210 and 560-570) appear to be more hydrophilic in South Texas isolates compared to vaccine strains. Only one amino acid difference was found between South Texas and vaccine strains within two previously described B-cell epitopes. A total of 4 amino acid differences were observed within three peptides previously shown to induce protective immune responses in cattle.
Sequence differences between South Texas isolates and Yeerongpilly and Camcord strains are spread throughout the entire Bm86 sequence, suggesting that geographic variation does exist. Differences within previously described B-cell epitopes between South Texas isolates and vaccine strains are minimal; however, short regions of hydrophilic amino acids found unique to South Texas isolates suggest that additional unique surface exposed peptides could be targeted.
PMCID: PMC2989326  PMID: 21047431
8.  blaCMY-2-Positive IncA/C Plasmids from Escherichia coli and Salmonella enterica Are a Distinct Component of a Larger Lineage of Plasmids▿ †  
Large multidrug resistance plasmids of the A/C incompatibility complex (IncA/C) have been found in a diverse group of Gram-negative commensal and pathogenic bacteria. We present three completed sequences from IncA/C plasmids that originated from Escherichia coli (cattle) and Salmonella enterica serovar Newport (human) and that carry the cephamycinase gene blaCMY-2. These large plasmids (148 to 166 kbp) share extensive sequence identity and synteny. The most divergent plasmid, peH4H, has lost several conjugation-related genes and has gained a kanamycin resistance region. Two of the plasmids (pAM04528 and peH4H) harbor two copies of blaCMY-2, while the third plasmid (pAR060302) harbors a single copy of the gene. The majority of single-nucleotide polymorphisms comprise nonsynonymous mutations in floR. A comparative analysis of these plasmids with five other published IncA/C plasmids showed that the blaCMY-2 plasmids from E. coli and S. enterica are genetically distinct from those originating from Yersinia pestis and Photobacterium damselae and distal to one originating from Yersinia ruckeri. While the overall similarity of these plasmids supports the likelihood of recent movements among E. coli and S. enterica hosts, their greater divergence from Y. pestis or Y. ruckeri suggests less recent plasmid transfer among these pathogen groups.
PMCID: PMC2812137  PMID: 19949054
9.  Imidocarb Dipropionate Clears Persistent Babesia caballi Infection with Elimination of Transmission Potential▿  
Antimicrobial Agents and Chemotherapy  2009;53(10):4327-4332.
Antimicrobial treatment of persistent infection to eliminate transmission risk represents a specific challenge requiring compelling evidence of complete pathogen clearance. The limited repertoire of antimicrobial agents targeted at protozoal parasites magnifies this challenge. Using Babesia caballi as both a model and a specific apicomplexan pathogen for which evidence of the elimination of transmission risk is required for international animal movement, we tested whether a high-dose regimen of imidocarb dipropionate cleared infection from persistently infected asymptomatic horses and/or eliminated transmission risk. Clearance with elimination of transmission risk was supported by the following four specific lines of evidence: (i) inability to detect parasites by quantitative PCR and nested PCR amplification, (ii) conversion from seropositive to seronegative status, (iii) inability to transmit infection by direct inoculation of blood into susceptible recipient horses, and (iv) inability to transmit infection by ticks acquisition fed on the treated horses and subsequently transmission fed on susceptible horses. In contrast, untreated horses remained infected and capable of transmitting B. caballi using the same criteria. These findings establish that imidocarb dipropionate treatment clears B. caballi infection with confirmation of lack of transmission risk either by direct blood transfer or a high tick burden. Importantly, the treated horses revert to seronegative status according to the international standard for serologic testing and would be permitted to move between countries where the pathogen is endemic and countries that are free of the pathogen.
PMCID: PMC2764191  PMID: 19620328
10.  Persistently Infected Horses Are Reservoirs for Intrastadial Tick-Borne Transmission of the Apicomplexan Parasite Babesia equi▿  
Infection and Immunity  2008;76(8):3525-3529.
Tick-borne pathogens may be transmitted intrastadially and transstadially within a single vector generation as well as vertically between generations. Understanding the mode and relative efficiency of this transmission is required for infection control. In this study, we established that adult male Rhipicephalus microplus ticks efficiently acquire the protozoal pathogen Babesia equi during acute and persistent infections and transmit it intrastadially to naïve horses. Although the level of parasitemia during acquisition feeding affected the efficiency of the initial tick infection, infected ticks developed levels of ≥104 organisms/pair of salivary glands independent of the level of parasitemia during acquisition feeding and successfully transmitted them, indicating that replication within the tick compensated for any initial differences in infectious dose and exceeded the threshold for transmission. During the development of B. equi parasites in the salivary gland granular acini, the parasites expressed levels of paralogous surface proteins significantly different from those expressed by intraerythrocytic parasites from the mammalian host. In contrast to the successful intrastadial transmission, adult female R. microplus ticks that fed on horses with high parasitemia passed the parasite vertically into the eggs with low efficiency, and the subsequent generation (larvae, nymphs, and adults) failed to transmit B. equi parasites to naïve horses. The data demonstrated that intrastadial but not transovarial transmission is an efficient mode for B. equi transmission and that persistently infected horses are an important reservoir for transmission. Consequently, R. microplus male ticks and persistently infected horses should be targeted for disease control.
PMCID: PMC2493223  PMID: 18490466
11.  Conservation in the face of diversity: multistrain analysis of an intracellular bacterium 
BMC Genomics  2009;10:16.
With the recent completion of numerous sequenced bacterial genomes, notable advances have been made in understanding the level of conservation between various species. However, relatively little is known about the genomic diversity among strains. We determined the complete genome sequence of the Florida strain of Anaplasma marginale, and near complete (>96%) sequences for an additional three strains, for comparative analysis with the previously fully sequenced St. Maries strain genome.
These comparisons revealed that A. marginale has a closed-core genome with few highly plastic regions, which include the msp2 and msp3 genes, as well as the aaap locus. Comparison of the Florida and St. Maries genome sequences found that SNPs comprise 0.8% of the longer Florida genome, with 33.5% of the total SNPs between all five strains present in at least two strains and 3.0% of SNPs present in all strains except Florida. Comparison of genomes from three strains of Mycobacterium tuberculosis, Bacillus anthracis, and Nessieria meningiditis, as well as four Chlamydophila pneumoniae strains found that 98.8%–100% of SNPs are unique to each strain, suggesting A. marginale, with 76.0%, has an intermediate level of strain-specific SNPs. Comparison of genomes from other organisms revealed variation in diversity that did not segregate with the environmental niche the bacterium occupies, ranging from 0.00% to 8.00% of the larger pairwise-compared genome.
Analysis of multiple A. marginale strains suggests intracellular bacteria have more variable SNP retention rates than previously reported, and may have closed-core genomes in response to the host organism environment and/or reductive evolution.
PMCID: PMC2649000  PMID: 19134224
12.  Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa 
PLoS Pathogens  2007;3(10):e148.
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.
Author Summary
Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family (smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.
PMCID: PMC2034396  PMID: 17953480
13.  Development of Specific Immunoglobulin Ga (IgGa) and IgGb Antibodies Correlates with Control of Parasitemia in Babesia equi Infection 
Clinical and Vaccine Immunology  2006;13(2):297-300.
In this study, the kinetics of specific immunoglobulin G (IgG) isotypes were characterized in Babesia equi (Theileria equi)-infected horses. IgGa and IgGb developed during acute infection, whereas IgG(T) was detected only after resolution of acute parasitemia. The same IgG isotype profile induced during acute infection was obtained by equi merozoite antigen 1/saponin immunization.
PMCID: PMC1391941  PMID: 16467341
14.  Ability of the Vector Tick Boophilus microplus To Acquire and Transmit Babesia equi following Feeding on Chronically Infected Horses with Low-Level Parasitemia 
Journal of Clinical Microbiology  2005;43(8):3755-3759.
The protozoan parasite Babesia equi replicates within erythrocytes. During the acute phase of infection, B. equi can reach high levels of parasitemia, resulting in a hemolytic crisis. Horses that recover from the acute phase of the disease remain chronically infected. Subsequent transmission is dependent upon the ability of vector ticks to acquire B. equi and, following development and replication, establishment of B. equi in the salivary glands. Although restriction of the movement of chronically infected horses with B. equi is based on the presumption that ticks can acquire and transmit the parasite at low levels of long-term infection, parasitemia levels during the chronic phase of infection have never been quantified, nor has transmission been demonstrated. To address these epidemiologically significant questions, we established long-term B. equi infections (>1 year), measured parasitemia levels over time, and tested whether nymphal Boophilus microplus ticks could acquire and, after molting to the adult stage, transmit B. equi to naive horses. B. equi levels during the chronic phase of infection ranged from 103.3 to 106.0/ml of blood, with fluctuation over time within individual horses. B. microplus ticks fed on chronically infected horses with mean parasite levels of 105.5 ± 100.48/ml of blood acquired B. equi, with detection of B. equi in the salivary glands of 7 to 50% of fed ticks, a range encompassing the percentage of positive ticks that had been identically fed on a horse in the acute phase of infection with high parasitemia levels. Ticks that acquired B. equi from chronically infected horses, as well as those fed during the acute phase of infection, successfully transmitted the parasite to naive horses. The results unequivocally demonstrated that chronically infected horses with low-level parasitemia are competent mammalian reservoirs for tick transmission of B. equi.
PMCID: PMC1233951  PMID: 16081906
15.  Expression of Equi Merozoite Antigen 2 during Development of Babesia equi in the Midgut and Salivary Gland of the Vector Tick Boophilus microplus 
Journal of Clinical Microbiology  2003;41(12):5803-5809.
Equi merozoite antigens 1 and 2 (EMA-1 and EMA-2) are Babesia equi proteins expressed on the parasite surface during infection in horses and are orthologues of proteins in Theileria spp., which are also tick-transmitted protozoal pathogens. We determined in this study whether EMA-1 and EMA-2 were expressed within the vector tick Boophilus microplus. B. equi transitions through multiple, morphologically distinct stages, including sexual stages, and these transitions culminate in the formation of infectious sporozoites in the tick salivary gland. EMA-2-positive B. equi stages in the midgut lumen and midgut epithelial cells of Boophilus microplus nymphs were identified by reactivity with monoclonal antibody 36/253.21. This monoclonal antibody also recognized B. equi in salivary glands of adult Boophilus microplus. In addition, quantification of B. equi in the mammalian host and vector tick indicated that the duration of tick feeding and parasitemia levels affected the percentage of nymphs that contained morphologically distinct B. equi organisms in the midgut. In contrast, there was no conclusive evidence that B. equi EMA-1 was expressed in either the Boophilus microplus midgut or salivary gland when monoclonal antibody 36/18.57 was used. The expression of B. equi EMA-2 in Boophilus microplus provides a marker for detecting the various development stages and facilitates the identification of novel stage-specific Babesia proteins for testing transmission-blocking immunity.
PMCID: PMC308990  PMID: 14662988
16.  Conformational Dependence and Conservation of an Immunodominant Epitope within the Babesia equi Erythrocyte-Stage Surface Protein Equi Merozoite Antigen 1 
Equi merozoite antigen 1 (EMA-1) is an immunodominant Babesia equi erythrocyte-stage surface protein. A competitive enzyme-linked immunosorbent assay (ELISA), based on inhibition of monoclonal antibody (MAb) 36/133.97 binding to recombinant EMA-1 by equine anti-B. equi antibodies, detects horses infected with strains present throughout the world. The objectives of this study were to define the epitope bound by MAb 36/133.97 and quantify the amino acid conservation of EMA-1, including the region containing the epitope bound by MAb 36/133.97. The alignment of the deduced amino acid sequence of full-length EMA-1 (Florida isolate) with 15 EMA-1 sequences from geographically distinct isolates showed 82.8 to 99.6% identities (median, 98.5%) and 90.5 to 99.6% similarities (median, 98.9%) between sequences. Full-length and truncated recombinant EMA-1 proteins were expressed and tested for their reactivities with MAb 36/133.97. Binding required the presence of amino acids on both N- and C-terminal regions of a truncated peptide (EMA-1.2) containing amino acids 1 to 98 of EMA-1. This result indicated that the epitope defined by MAb 36/133.97 is dependent on conformation. Sera from persistently infected horses inhibited the binding of MAb 36/133.97 to EMA-1.2 in a competitive ELISA, indicating that equine antibodies which inhibit binding of MAb 36/133.97 also recognize epitopes in the same region (the first 98 residues). Within this region, the deduced amino acid sequences had 85.7 to 100% identities (median, 99.0%), with similarities of 94.9 to 100% (median, 100%). Therefore, the region which binds to both MAb 36/133.97 and inhibiting equine antibodies has a median amino acid identity of 99.0% and a similarity of 100%. These data provide a molecular basis for the use of both EMA-1 and MAb 36/133.97 for the detection of antibodies against B. equi.
PMCID: PMC130086  PMID: 12414764
17.  Detection of Equine Antibodies to Babesia caballi by Recombinant B. caballi Rhoptry-Associated Protein 1 in a Competitive-Inhibition Enzyme-Linked Immunosorbent Assay 
Journal of Clinical Microbiology  1999;37(7):2285-2290.
A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was developed for detection of equine antibodies specific for Babesia caballi. The assay used recombinant B. caballi rhoptry-associated protein 1 (RAP-1) and monoclonal antibody (MAb) 79/17.18.5, which is reactive with a peptide epitope of a native 60-kDa B. caballi antigen. The gene encoding the recombinant antigen was sequenced, and database analysis revealed that the gene product is a rhoptry-associated protein. Cloning and expression of a truncated copy of the gene demonstrated that MAb 79/17.18.5 reacts with the C-terminal repeat region of the protein. The cELISA was used to evaluate 302 equine serum samples previously tested for antibodies to B. caballi by a standardized complement fixation test (CFT). The results of cELISA and CFT were 73% concordant. Seventy-two of the 77 serum samples with discordant results were CFT negative and cELISA positive. Further evaluation of the serum samples with discordant results by indirect immunofluorescence assay (IFA) demonstrated that at a serum dilution of 1:200, 48 of the CFT-negative and cELISA-positive serum samples contained antibodies reactive with B. caballi RAP-1. Four of five CFT-positive and cELISA-negative serum samples contained antibodies reactive with B. caballi when they were tested by IFA. These data indicate that following infection with B. caballi, horses consistently produce antibody to the RAP-1 epitope defined by MAb 79/17.18.5, and when used in the cELISA format, recombinant RAP-1 is a useful antigen for the serologic detection of anti-B. caballi antibodies.
PMCID: PMC85139  PMID: 10364599

Results 1-17 (17)