Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Prevalence of Bovine Tuberculosis and Risk Factor Assessment in Cattle in Rural Livestock Areas of Govuro District in the Southeast of Mozambique 
PLoS ONE  2014;9(3):e91527.
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy.
Methodology/Principal findings
A cross-sectional study was conducted in Govuro district to determine bTB prevalence in cattle and identify associated risk factors. A representative sample of the cattle population was defined, stratified by livestock areas (n = 14). A total of 1136 cattle from 289 farmers were tested using the single comparative intradermal tuberculin test. The overall apparent prevalence was estimated at 39.6% (95% CI 36.8–42.5) using a diagnostic threshold cut-off according to the World Organization for Animal Health. bTB reactors were found in 13 livestock areas, with prevalence rates ranging from 8.1 to 65.8%. Age was the main risk factor; animals older than 4 years were more likely to be positive reactors (OR = 3.2, 95% CI: 2.2–4.7). Landim local breed showed a lower prevalence than crossbred animals (Landim × Brahman) (OR = 0.6, 95% CI: 0.4–0.8).
The findings reveal an urgent need for intervention with effective, area-based, control measures in order to reduce bTB prevalence and prevent its spread to the human population. In addition to the high prevalence, population habits in Govuro, particularly the consumption of raw milk, clearly may potentiate the transmission to humans. Thus, further studies on human tuberculosis and the molecular characterization of the predominant strain lineages that cause bTB in cattle and humans are urgently required to evaluate the impact on human health in the region.
PMCID: PMC3954769  PMID: 24632593
2.  Mycobacterium tuberculosis Beijing Genotype Is Associated with HIV Infection in Mozambique 
PLoS ONE  2013;8(8):e71999.
The Beijing genotype is a lineage of Mycobacterium tuberculosis that is distributed worldwide and responsible for large epidemics, associated with multidrug-resistance. However, its distribution in Africa is less understood due to the lack of data. Our aim was to investigate the prevalence and possible transmission of Beijing strains in Mozambique by a multivariate analysis of genotypic, geographic and demographic data. A total of 543 M. tuberculosis isolates from Mozambique were spoligotyped. Of these, 33 were of the Beijing lineage. The genetic relationship between the Beijing isolates were studied by identification of genomic deletions within some Regions of Difference (RD), Restriction Fragment Length Polymorphism (RFLP) and Mycobacterial Interspersed Repetivie Unit – variable number tandem repeat (MIRU-VNTR). Beijing strains from South Africa, representing different sublineages were included as reference strains. The association between Beijing genotype, Human Immunodeficiency Virus (HIV) serology and baseline demographic data was investigated. HIV positive serostatus was significantly (p=0.023) more common in patients with Beijing strains than in patients with non-Beijing strains in a multivariable analysis adjusted for age, sex and province (14 (10.9%) of the 129 HIV positive patients had Beijing strains while 6/141 (4.3%) of HIV negative patients had Beijing strains). The majority of Beijing strains were found in the Southern region of Mozambique, particularly in Maputo City (17%). Only one Beijing strain was drug resistant (multi-drug resistant). By combined use of RD and spoligotyping, three genetic sublineages could be tentatively identified where a distinct group of four isolates had deletion of RD150, a signature of the “sublineage 7” recently emerging in South Africa. The same group was very similar to South African “sublineage 7” by RFLP and MIRU-VNTR, suggesting that this sublineage could have been recently introduced in Mozambique from South Africa, in association with HIV infection.
PMCID: PMC3737140  PMID: 23940801
3.  Immune Responses to ESAT-6 and CFP-10 by FASCIA and Multiplex Technology for Diagnosis of M. tuberculosis Infection; IP-10 Is a Promising Marker 
PLoS ONE  2012;7(11):e43438.
There is a need for reliable markers to diagnose active and latent tuberculosis (TB). The interferon gamma release assays (IGRAs) are compared to the tuberculin skin test (TST) more specific, but cannot discriminate between recent or remote TB infection. Here the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA), which quantifies expanded T-lymphoblasts by flow-cytometric analysis after long-term antigen stimulation of whole blood, is combined with cytokine/chemokine analysis in the supernatant by multiplex technology for diagnosis of Mycobacterium tuberculosis (Mtb) infection.
Methods and Findings
Consecutive patients with suspected TB (n = 85), with microbiologically verified active pulmonary TB (n = 33), extra pulmonary TB (n = 21), clinical TB (n = 11), presumed latent TB infection (LTBI) (n = 23), patients negative for TB (n = 8) and 21 healthy controls were studied. Blood samples were analyzed with FASCIA and multiplex technology to determine and correlate proliferative responses and the value of 14 cytokines for diagnosis of Mtb infection: IFN- γ, IL-2, TNF-α, IP-10, IL-12, IL-6, IL-4, IL-5, IL-13, IL-17, MIP-1β, GM-CSF, IFN-α2 and IL-10. Cytokine levels for IFN-γ, IP-10, MIP-1β, IL-2, TNF-α, IL-6, IL-10, IL-13 and GM-CSF were significantly higher after stimulation with the Mtb specific antigens ESAT-6 and CFP-10 in patients with active TB compared to healthy controls (p<0.05) and correlated with proliferative responses. IP-10 was positive in all patients with verified TB, if using a combination of ESAT-6 and CFP-10 and was the only marker significantly more sensitive in detecting active TB then IFN-γ (p = 0.012). Cytokine responses in patients with active TB were more frequent and detected at higher levels than in patients with LTBI.
IP-10 seems to be an important marker for diagnosis of active and latent TB. Patients with active TB and LTBI responded with similar cytokine profiles against TB antigens but proliferative and cytokine responses were generally higher in patients with active TB.
PMCID: PMC3493549  PMID: 23144772
4.  Mycobacterium tuberculosis Strains Potentially Involved in the TB Epidemic in Sweden a Century Ago 
PLoS ONE  2012;7(10):e46848.
A hundred years ago the prevalence of tuberculosis (TB) in Sweden was one of the highest in the world. In this study we conducted a population-based search for distinct strains of Mycobacterium tuberculosis complex isolated from patients born in Sweden before 1945. Many of these isolates represent the M. tuberculosis complex population that fueled the TB epidemic in Sweden during the first half of the 20th century.
Genetic relationships between strains that caused the epidemic and present day strains were studied by spoligotyping and restriction fragment length polymorphism.
The majority of the isolates from the elderly population were evolutionary recent Principal Genetic Group (PGG)2/3 strains (363/409 or 88.8%), and only a low proportion were ancient PGG1 strains (24/409 or 5.9%). Twenty-two were undefined. The isolates demonstrated a population where the Euro-American superlineage dominated; in particular with Haarlem (41.1%) and T (37.7%) spoligotypes and only 21.2% belonged to other spoligotype families. Isolates from the elderly population clustered much less frequently than did isolates from a young control group population.
A closely knit pool of PGG2/3 strains restricted to Sweden and its immediate neighbours appears to have played a role in the epidemic, while PGG1 strains are usually linked to migrants in todaýs Sweden. Further studies of these outbreak strains may give indications of why the epidemic waned.
PMCID: PMC3466202  PMID: 23056484
5.  Failure To Recruit Anti-Inflammatory CD103+ Dendritic Cells and a Diminished CD4+ Foxp3+ Regulatory T Cell Pool in Mice That Display Excessive Lung Inflammation and Increased Susceptibility to Mycobacterium tuberculosis 
Infection and Immunity  2012;80(3):1128-1139.
Susceptibility to Mycobacterium tuberculosis is characterized by excessive lung inflammation, tissue damage, and failure to control bacterial growth. To increase our understanding of mechanisms that may regulate the host immune response in the lungs, we characterized dendritic cells expressing CD103 (αE integrin) (αE-DCs) and CD4+ Foxp3+ regulatory T (Treg) cells during M. tuberculosis infection. In resistant C57BL/6 and BALB/c mice, the number of lung αE-DCs increased dramatically during M. tuberculosis infection. In contrast, highly susceptible DBA/2 mice failed to recruit αE-DCs even during chronic infection. Even though tumor necrosis factor alpha (TNF-α) is produced by multiple DCs and macrophage subsets and is required for control of bacterial growth, αE-DCs remained TNF-α negative. Instead, αE-DCs contained a high number of transforming growth factor beta-producing cells in infected mice. Further, we show that Treg cells in C57BL/6 and DBA/2 mice induce gamma interferon during pulmonary tuberculosis. In contrast to resistant mice, the Treg cell population was diminished in the lungs, but not in the draining pulmonary lymph nodes (PLN), of highly susceptible mice during chronic infection. Treg cells have been reported to inhibit M. tuberculosis-specific T cell immunity, leading to increased bacterial growth. Still, despite the reduced number of lung Treg cells in DBA/2 mice, the bacterial load in the lungs was increased compared to resistant animals. Our results show that αE-DCs and Treg cells that may regulate the host immune response are increased in M. tuberculosis-infected lungs of resistant mice but diminished in infected lungs of susceptible mice.
PMCID: PMC3294659  PMID: 22215739
7.  Mycobacterium tuberculosis Infection Interferes with HIV Vaccination in Mice 
PLoS ONE  2012;7(7):e41205.
Tuberculosis (TB) has emerged as the most prominent bacterial disease found in human immunodeficiency virus (HIV)-positive individuals worldwide. Due to high prevalence of asymptomatic Mycobacterium tuberculosis (Mtb) infections, the future HIV vaccine in areas highly endemic for TB will often be administrated to individuals with an ongoing Mtb infection. The impact of concurrent Mtb infection on the immunogenicity of a HIV vaccine candidate, MultiHIV DNA/protein, was investigated in mice. We found that, depending on the vaccination route, mice infected with Mtb before the administration of the HIV vaccine showed impairment in both the magnitude and the quality of antibody and T cell responses to the vaccine components p24Gag and gp160Env. Mice infected with Mtb prior to intranasal HIV vaccination exhibited reduced p24Gag-specific serum IgG and IgA, and suppressed gp160Env-specific serum IgG as compared to respective titers in uninfected HIV-vaccinated controls. Importantly, in Mtb-infected mice that were HIV-vaccinated by the intramuscular route the virus neutralizing activity in serum was significantly decreased, relative to uninfected counterparts. In addition mice concurrently infected with Mtb had fewer p24Gag-specific IFN-γ-expressing T cells and multifunctional T cells in their spleens. These results suggest that Mtb infection might interfere with the outcome of prospective HIV vaccination in humans.
PMCID: PMC3406616  PMID: 22848444
8.  Tuberculosis and HIV Co-Infection 
PLoS Pathogens  2012;8(2):e1002464.
Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases.
PMCID: PMC3280977  PMID: 22363214
9.  African 2, a Clonal Complex of Mycobacterium bovis Epidemiologically Important in East Africa▿ †  
Journal of Bacteriology  2010;193(3):670-678.
We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.
PMCID: PMC3021238  PMID: 21097608
10.  The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited 
PLoS ONE  2011;6(4):e18601.
The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048).
PMCID: PMC3080393  PMID: 21533101
11.  Genomic Stability over 9 Years of an Isoniazid Resistant Mycobacterium tuberculosis Outbreak Strain in Sweden 
PLoS ONE  2011;6(1):e16647.
In molecular epidemiological studies of drug resistant Mycobacterium tuberculosis (TB) in Sweden a large outbreak of an isoniazid resistant strain was identified, involving 115 patients, mainly from the Horn of Africa. During the outbreak period, the genomic pattern of the outbreak strain has stayed virtually unchanged with regard to drug resistance, IS6110 restriction fragment length polymorphism and spoligotyping patterns. Here we present the complete genome sequence analyses of the index isolate and two isolates sampled nine years after the index case as well as experimental data on the virulence of this outbreak strain. Even though the strain has been present in the community for nine years and passaged between patients at least five times in-between the isolates, we only found four single nucleotide polymorphisms in one of the later isolates and a small (4 amino acids) deletion in the other compared to the index isolate. In contrast to many other evolutionarily successful outbreak lineages (e.g. the Beijing lineage) this outbreak strain appears to be genetically very stable yet evolutionarily successful in a low endemic country such as Sweden. These findings further illustrate that the rate of genomic variation in TB can be highly strain dependent, something that can have important implications for epidemiological studies as well as development of resistance.
PMCID: PMC3031603  PMID: 21304944
12.  Molecular diversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mozambique 
BMC Microbiology  2010;10:195.
Mozambique is one of the countries with the highest burden of tuberculosis (TB) in Sub-Saharan Africa, and information on the predominant genotypes of Mycobacterium tuberculosis circulating in the country are important to better understand the epidemic. This study determined the predominant strain lineages that cause TB in Mozambique.
A total of 445 M. tuberculosis isolates from seven different provinces of Mozambique were characterized by spoligotyping and resulting profiles were compared with the international spoligotyping database SITVIT2.
The four most predominant lineages observed were: the Latin-American Mediterranean (LAM, n = 165 or 37%); the East African-Indian (EAI, n = 132 or 29.7%); an evolutionary recent but yet ill-defined T clade, (n = 52 or 11.6%); and the globally-emerging Beijing clone, (n = 31 or 7%). A high spoligotype diversity was found for the EAI, LAM and T lineages.
The TB epidemic in Mozambique is caused by a wide diversity of spoligotypes with predominance of LAM, EAI, T and Beijing lineages.
PMCID: PMC2914001  PMID: 20663126
13.  Drug Resistant Mycobacterium tuberculosis of the Beijing Genotype Does Not Spread in Sweden 
PLoS ONE  2010;5(5):e10893.
Drug resistant (DR) and multi-drug resistant (MDR) tuberculosis (TB) is increasing worldwide. In some parts of the world 10% or more of new TB cases are MDR. The Beijing genotype is a distinct genetic lineage of Mycobacterium tuberculosis, which is distributed worldwide, and has caused large outbreaks of MDR-TB. It has been proposed that certain lineages of M. tuberculosis, such as the Beijing lineage, may have specific adaptive advantages. We have investigated the presence and transmission of DR Beijing strains in the Swedish population.
Methodology/Principal Findings
All DR M. tuberculosis complex isolates between 1994 and 2008 were studied. Isolates that were of Beijing genotype were investigated for specific resistance mutations and phylogenetic markers. Seventy (13%) of 536 DR strains were of Beijing genotype. The majority of the patients with Beijing strains were foreign born, and their country of origin reflects the countries where the Beijing genotype is most prevalent. Multidrug-resistance was significantly more common in Beijing strains than in non-Beijing strains. There was a correlation between the Beijing genotype and specific resistance mutations in the katG gene, the mabA-inhA-promotor and the rpoB gene. By a combined use of RD deletions, spoligotyping, IS1547, mutT gene polymorphism and Rv3135 gene analysis the Beijing strains could be divided into 11 genomic sublineages. Of the patients with Beijing strains 28 (41%) were found in altogether 10 clusters (2–5 per cluster), as defined by RFLP IS6110, while 52% of the patients with non-Beijing strains were in clusters. By 24 loci MIRU-VNTR 31 (45%) of the patients with Beijing strains were found in altogether 7 clusters (2–11 per cluster). Contact tracing established possible epidemiological linkage between only two patients with Beijing strains.
Although extensive outbreaks with non-Beijing TB strains have occurred in Sweden, Beijing strains have not taken hold, in spite of the proximity to high prevalence countries such as Russia and the Baltic countries. The Beijing sublineages so far introduced in Sweden may not be adapted to spread in the Scandinavian population.
PMCID: PMC2878347  PMID: 20531942
14.  African 1, an Epidemiologically Important Clonal Complex of Mycobacterium bovis Dominant in Mali, Nigeria, Cameroon, and Chad▿ † 
Journal of Bacteriology  2009;191(6):1951-1960.
We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.
PMCID: PMC2648362  PMID: 19136597
15.  Global Distribution of Mycobacterium tuberculosis Spoligotypes 
Emerging Infectious Diseases  2002;8(11):1347-1349.
We present a short summary of recent observations on the global distribution of the major clades of the Mycobacterium tuberculosis complex, the causative agent of tuberculosis. This global distribution was defined by data-mining of an international spoligotyping database, SpolDB3. This database contains 11,708 patterns from as many clinical isolates originating from more than 90 countries. The 11,708 spoligotypes were clustered into 813 shared types. A total of 1,300 orphan patterns (clinical isolates showing a unique spoligotype) were also detected.
PMCID: PMC2738532  PMID: 12453368
Mycobacterium tuberculosis; spoligotyping
16.  Spread of Drug-Resistant Pulmonary Tuberculosis in Estonia 
Journal of Clinical Microbiology  2001;39(9):3339-3345.
Restriction fragment length polymorphism (RFLP) analysis of 209 Mycobacterium tuberculosis clinical isolates obtained from newly detected pulmonary tuberculosis patients (151 male and 58 female; mean age, 41 years) in Estonia during 1994 showed that 61 isolates (29%) belonged to a genetically closely related group of isolates, family A, with a predominant IS6110 banding pattern. These strains shared the majority of their IS6110 DNA-containing restriction fragments, representing a predominant banding pattern (similarity, >65%). This family A comprised 12 clusters of identical isolates, and the largest cluster comprised 10 strains. The majority (87.5%) of all multidrug-resistant (MDR) isolates, 67.2% of all isolates with any drug resistance, but only 12% of the fully susceptible isolates of M. tuberculosis belonged to family A. These strains were confirmed by spoligotyping as members of the Beijing genotype family. The spread of Beijing genotype MDR M. tuberculosis strains was also frequently seen in 1997 to 1999. The members of this homogenous group of drug-resistant M. tuberculosis strains have contributed substantially to the continual emergence of drug-resistant tuberculosis all over Estonia.
PMCID: PMC88341  PMID: 11526173
17.  Evolution and Clonal Traits of Mycobacterium tuberculosis Complex in Guinea-Bissau 
Journal of Clinical Microbiology  1999;37(12):3872-3878.
Two hundred twenty-nine consecutive isolates of Mycobacterium tuberculosis complex from patients with pulmonary tuberculosis in Guinea-Bissau, which is located in West Africa, were analyzed for clonal origin by biochemical typing and DNA fingerprinting. By using four biochemical tests (resistance to thiophene-2-carboxylic acid hydrazide, niacin production, nitrate reductase test, and pyrazinamidase test), the isolates could be assigned to five different biovars. The characteristics of four strains conformed fully with the biochemical criteria for M. bovis, while those of 85 isolates agreed with the biochemical criteria for M. tuberculosis. The remaining 140 isolates could be allocated into one of three biovars (biovars 2 to 4) representing a spectrum between the classical bovine (biovar 1) and human (biovar 5) tubercle bacilli. By using two genotyping methods, restriction fragment length polymorphism analysis with IS6110 (IS6110 RFLP analysis) and spoligotyping, the isolates could be separated into three groups (groups A to C) of the M. tuberculosis complex. Group A (n = 95), which contained the majority of classical human M. tuberculosis isolates, had large numbers of copies of IS6110 elements (mean number of copies, 9) and a distinctive spoligotyping pattern that lacked spacers 33 to 36. Isolates of the major group, group B (n = 119), had fewer IS6110 copies (mean copy number, 5) and a spoligotyping pattern that lacked spacers 7 to 9 and 39 and mainly comprised isolates of biovars 1 to 4. Group C isolates (n = 15) had one to three IS6110 copies, had a spoligotyping pattern that lacked spacers 29 to 34, and represented biovar 3 to 5 isolates. Four isolates whose biochemical characteristics conformed with those of M. bovis clustered with the group B isolates and had spoligotype patterns that differed from those previously reported for M. bovis, in that they possessed spacers 40 to 43. Interestingly, isolates of group B and, to a certain extent, also isolates of group C showed a high degree of variability in biochemical traits, despite genotypic identity in terms of IS6110 RFLP and spoligotype patterns. We hypothesize that isolates of groups B and C have their evolutionary origin in West Africa, while group A isolates are of European descent.
PMCID: PMC85833  PMID: 10565899
18.  In Vitro Adhesion of Uropathogenic Escherichia coli to Human Periurethral Cells 
Infection and Immunity  1980;28(3):972-980.
The in vitro adhesion of three uropathogenic strains of Escherichia coli to epithelial cells from the periurethral area (area surrounding the urethral orifice) of women with and without a history of recurrent urinary tract infections was investigated. All strains showed a specific mannose-resistant hemagglutination restricted to human erythrocytes. Since only a few hundred periurethral cells were used in each test, gentle methods were required. Optimal results were obtained with bacteria grown for 16 h at 37°C in nutrient broth without shaking. The binding of bacteria seemed to be irreversible under the conditions studied, since repeated washings of the epithelial cells after incubation did not decrease the number of adhering bacteria. Chloramphenicol was used to control the number of added bacteria in the incubation system. A difference in the adhesive capacity of periurethral cells of infection-prone and healthy individuals was most evident at concentrations of 2.5 × 109 bacteria/ml. Electron microscope studies indicated that pili mediated the adhesion. Adhesion was correlated with the mannose-resistant hemagglutination of human erythrocytes, indicating that the pili were not type 1 pili. Day-to-day variations in the adhesiveness of the bacteria were reduced by selecting well-adhering bacteria with the aid of in vitro passage on periurethral cells or human erythrocytes, and by exclusion of bacteria with low hemagglutination ability.
PMCID: PMC551046  PMID: 6105131

Results 1-18 (18)