PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Breaking the Waves: Modelling the Potential Impact of Public Health Measures to Defer the Epidemic Peak of Novel Influenza A/H1N1 
PLoS ONE  2009;4(12):e8356.
Background
On June 11, 2009, the World Health Organization declared phase 6 of the novel influenza A/H1N1 pandemic. Although by the end of September 2009, the novel virus had been reported from all continents, the impact in most countries of the northern hemisphere has been limited. The return of the virus in a second wave would encounter populations that are still nonimmune and not vaccinated yet. We modelled the effect of control strategies to reduce the spread with the goal to defer the epidemic wave in a country where it is detected in a very early stage.
Methodology/Principal Findings
We constructed a deterministic SEIR model using the age distribution and size of the population of Germany based on the observed number of imported cases and the early findings for the epidemiologic characteristics described by Fraser (Science, 2009). We propose a two-step control strategy with an initial effort to trace, quarantine, and selectively give prophylactic treatment to contacts of the first 100 to 500 cases. In the second step, the same measures are focused on the households of the next 5,000 to 10,000 cases. As a result, the peak of the epidemic could be delayed up to 7.6 weeks if up to 30% of cases are detected. However, the cumulative attack rates would not change. Necessary doses of antivirals would be less than the number of treatment courses for 0.1% of the population. In a sensitivity analysis, both case detection rate and the variation of R0 have major effects on the resulting delay.
Conclusions/Significance
Control strategies that reduce the spread of the disease during the early phase of a pandemic wave may lead to a substantial delay of the epidemic. Since prophylactic treatment is only offered to the contacts of the first 10,000 cases, the amount of antivirals needed is still very limited.
doi:10.1371/journal.pone.0008356
PMCID: PMC2791869  PMID: 20027293
2.  Fast Ligation-Mediated PCR, a Fast and Reliable Method for IS6110-Based Typing of Mycobacterium tuberculosis Complex  
Journal of Clinical Microbiology  2005;43(11):5622-5627.
IS6110 restriction fragment length polymorphism (RFLP) analysis is the most widely applied method for strain differentiation of Mycobacterium tuberculosis complex. We have previously described mixed-linker PCR, an IS6110-based PCR method that favorably compared with other typing methods for M. tuberculosis complex according to reproducibility and ability to differentiate between strains. Here we report the further development of this method, called fast ligation-mediated PCR (FLiP), which allows analysis of strains within one working day and starting from less than 1 ng of mycobacterial DNA or a crude cell lysate. Blinded analysis of a standard set of 131 M. tuberculosis complex and nontuberculous isolates showed the ability to differentiate 81 types among 90 M. tuberculosis complex isolates with 84 different IS6110 RFLP fingerprint patterns and detected 97% of the 31 duplicate samples. We suggest that FLiP can serve to rapidly detect chains of transmission prior to starting high-throughput analysis or standard IS6110 RFLP. It may as well serve as a secondary typing technique for other, non-IS6110-based methods.
doi:10.1128/JCM.43.11.5622-5627.2005
PMCID: PMC1287794  PMID: 16272495
3.  Discriminatory Power and Reproducibility of Novel DNA Typing Methods for Mycobacterium tuberculosis Complex Strains 
Journal of Clinical Microbiology  2005;43(11):5628-5638.
In recent years various novel DNA typing methods have been developed which are faster and easier to perform than the current internationally standardized IS6110 restriction fragment length polymorphism typing method. However, there has been no overview of the utility of these novel typing methods, and it is largely unknown how they compare to previously published methods. In this study, the discriminative power and reproducibility of nine recently described PCR-based typing methods for Mycobacterium tuberculosis were investigated using the strain collection of the interlaboratory study of Kremer et al. (J. Clin. Microbiol. 37:2607-2618, 1999). This strain collection contains 90 M. tuberculosis complex and 10 non-M. tuberculosis complex mycobacterial strains, as well as 31 duplicated DNA samples to assess reproducibility. The highest reproducibility was found with variable numbers of tandem repeat typing using mycobacterial interspersed repetitive units (MIRU VNTR) and fast ligation-mediated PCR (FLiP), followed by second-generation spoligotyping, ligation-mediated PCR (LM-PCR), VNTR typing using five repeat loci identified at the Queens University of Belfast (QUB VNTR), and the Amadio speciation PCR. Poor reproducibility was associated with fluorescent amplified fragment length polymorphism typing, which was performed in three different laboratories. The methods were ordered from highest discrimination to lowest by the Hunter-Gaston discriminative index as follows: QUB VNTR typing, MIRU VNTR typing, FLiP, LM-PCR, and spoligotyping. We conclude that both VNTR typing methods and FLiP typing are rapid, highly reliable, and discriminative epidemiological typing methods for M. tuberculosis and that VNTR typing is the epidemiological typing method of choice for the near future.
doi:10.1128/JCM.43.11.5628-5638.2005
PMCID: PMC1287774  PMID: 16272496
4.  Snapshot of Moving and Expanding Clones of Mycobacterium tuberculosis and Their Global Distribution Assessed by Spoligotyping in an International Study†  
Journal of Clinical Microbiology  2003;41(5):1963-1970.
The present update on the global distribution of Mycobacterium tuberculosis complex spoligotypes provides both the octal and binary descriptions of the spoligotypes for M. tuberculosis complex, including Mycobacterium bovis, from >90 countries (13,008 patterns grouped into 813 shared types containing 11,708 isolates and 1,300 orphan patterns). A number of potential indices were developed to summarize the information on the biogeographical specificity of a given shared type, as well as its geographical spreading (matching code and spreading index, respectively). To facilitate the analysis of hundreds of spoligotypes each made up of a binary succession of 43 bits of information, a number of major and minor visual rules were also defined. A total of six major rules (A to F) with the precise description of the extra missing spacers (minor rules) were used to define 36 major clades (or families) of M. tuberculosis. Some major clades identified were the East African-Indian (EAI) clade, the Beijing clade, the Haarlem clade, the Latin American and Mediterranean (LAM) clade, the Central Asian (CAS) clade, a European clade of IS6110 low banders (X; highly prevalent in the United States and United Kingdom), and a widespread yet poorly defined clade (T). When the visual rules defined above were used for an automated labeling of the 813 shared types to define nine superfamilies of strains (Mycobacterium africanum, Beijing, M. bovis, EAI, CAS, T, Haarlem, X, and LAM), 96.9% of the shared types received a label, showing the potential for automated labeling of M. tuberculosis families in well-defined phylogeographical families. Intercontinental matches of shared types among eight continents and subcontinents (Africa, North America, Central America, South America, Europe, the Middle East and Central Asia, and the Far East) are analyzed and discussed.
doi:10.1128/JCM.41.5.1963-1970.2003
PMCID: PMC154710  PMID: 12734235
5.  Global Distribution of Mycobacterium tuberculosis Spoligotypes 
Emerging Infectious Diseases  2002;8(11):1347-1349.
We present a short summary of recent observations on the global distribution of the major clades of the Mycobacterium tuberculosis complex, the causative agent of tuberculosis. This global distribution was defined by data-mining of an international spoligotyping database, SpolDB3. This database contains 11,708 patterns from as many clinical isolates originating from more than 90 countries. The 11,708 spoligotypes were clustered into 813 shared types. A total of 1,300 orphan patterns (clinical isolates showing a unique spoligotype) were also detected.
doi:10.3201/eid0811.020125
PMCID: PMC2738532  PMID: 12453368
Mycobacterium tuberculosis; spoligotyping
6.  Evidence of the Presence of IS1245 and IS1311 or Closely Related Insertion Elements in Nontuberculous Mycobacteria outside of the Mycobacterium avium Complex 
Journal of Clinical Microbiology  2002;40(5):1869-1872.
A PCR assay based on the simultaneous detection of IS1245 and IS1311 was developed and used to determine the host range of these insertion elements. Specific PCR products were observed in Mycobacterium malmoense, Mycobacterium scrofulaceum, and Mycobacterium nonchromogenicum, indicating that IS1245 and IS1311 are not limited to the Mycobacterium avium complex.
doi:10.1128/JCM.40.5.1869-1872.2002
PMCID: PMC130668  PMID: 11980981
7.  Identification of Contaminating Fungal DNA Sequences in Zymolyase 
Journal of Clinical Microbiology  1999;37(3):830-831.
When different preparations of Zymolyase were included in the pretreatment protocol of a panfungal PCR assay using a primer system for the 18S rRNA gene, an amplification product occurred in negative controls. The amplified fragment showed 100.0% sequence identity to the Saccharomyces sensu stricto complex and Kluyveromyces lodderae. Lyticase, lysing enzymes, and proteinase K appeared to be free from fungal DNA.
PMCID: PMC84574  PMID: 9986868
8.  DNA Fingerprinting of Mycobacterium tuberculosis Complex Culture Isolates Collected in Brazil and Spotted onto Filter Paper 
Journal of Clinical Microbiology  1998;36(2):573-576.
The usefulness of filter paper for preservation of bacterial cells was shown by mixed-linker DNA fingerprint analysis of Mycobacterium tuberculosis isolates from 77 Brazilian patients. DNA fingerprints of samples spotted onto filter paper and conventional culture material were identical. Thus, filter paper specimens analyzed by an amplification-based typing method provide a new resource for epidemiological studies of infectious diseases.
PMCID: PMC104581  PMID: 9466780

Results 1-8 (8)